
Preface Target group

1 Preface
This manual contains detailed individual descriptions of all Assembler instructions from
the instruction set of the central processing units supported by the BS2000 operating
system.

Assembler instructions are those instructions in the instruction set which users may use
without restrictions to write Assembler programs. Moreover, these instructions are "safe"
in the sense that complete protection of hardware components and the BS2000
operating system is ensured when they are executed.

1.1 Target group

The manual was written for users who write, use or update programs in the Assembler
or macro language in BS2000. Users require basic knowledge of the operating system
and Assembler.

1.2 Summary of contents

The Assembler instruction descriptions follow a uniform pattern. For each instruction the
following is described:

• its function
• its Assembler format, i.e. how to write it in the Assembler language
• its machine format, i.e. how it is represented in the CPU
• its execution sequence in detail
• any condition code values which it sets
• possible program interrupts when it is executed.

In addition, most of the instruction descriptions also include

• programming notes and
• one or more examples.

U3119-J-Z125-2-7600 1

Target group Preface

The instructions themselves are divided into 4 groups:

• General Instructions (Chapter 3)
• Decimal Instructions (Chapter 4)
• Floating-Point Instructions (Chapter 5)
• ESA Instructions (Chapter 6)

Within these groups the instructions appear alphabetically according to their mnemonic
name.

Chapter 2 contains basic considerations.

2 U3119-J-Z125-2-7600

Preface Changes

1.3 Changes since the last version of the manual

Description of ESA support in Chapter 2 (2.1.3, 2.1.4, 2.2.2) and in the new Chapter 6
(ESA instructions).
Instruction lists in Appendix 7.2 and 7.3 now include ESA instructions.

Access to shared data in multiprocessor systems is described in Appendix 7.6.

U3119-J-Z125-2-7600 3

Basic considerations Addressing main memory

2 Basic considerations

2.1 Addressing main memory

The main memory can be considered as a sequence of individual bits. This sequence is
divided into 8-bit units which are called bytes. Each byte is associated with a unique
integer, called an address, which identifies it. Successive bytes have successive
addresses. The value range of the addresses, the "address space", starts at 0 and ends
at a system-specific upper limit.

2.1.1 Virtual addresses

All Assembler instructions described in this manual exclusively use so-called virtual
addresses and only process operands whose addresses are virtual. The instructions
themselves are likewise addressed virtually. In the central processing units themselves,
however, there are two further types of addresses, namely absolute addresses and real
addresses. These are only used beneath the Assembler instruction level, however, and
can neither be seen nor influenced in an application program.

Virtual addresses are allocated exclusively for a single program by the operating
system when a program is loaded or at its specific request. The allocation takes place
in multiple of pages; pages are address spaces with a length of 4096 (2 12) bytes and a
start address which is divisible by 4096 without a remainder. A program is only allowed
to read-access or write-access virtual addresses which have been allocated to it. If it
tries to access a non-allocated address, e.g. due to a programming error, the access is
ignored and a program interrupt occurs due to an address translation error (see section
2.4).

2.1.2 24-bit and 31-bit addresses

Addresses occur in two different lengths: 24-bit addresses and 31-bit addresses.
A 24-bit address can identify 16 777 216 bytes (16 megabytes) of (virtual) address
space; a 31-bit address can identify 2 147 483 648 bytes (2 gigabytes).

U3119-J-Z125-2-7600 5

Addressing main memory Basic considerations

Both 24-bit and 31-bit addresses are allocated as so-called address words, right-
justified, in 4-byte main memory areas or general-purpose registers. Unless otherwise
stated, the 8 bits to the left of a 24-bit address and the single bit to the left of a 31-bit
address are set to 0.

The bit positions in a 24-bit address are numbered from 8 to 31, those in a 31-bit
address from 1 to 31:

< Address word >

24-bit address

0 8 31

31-bit address

0 1 31

2.1.3 Addressing modes

The length of addresses, and hence the size of the address space usable in an
application program, is determined by the addressing mode. There are two addressing
modes: the 24-bit addressing mode and the 31-bit addressing mode. At any given time
the central processing unit is in one or other of these two modes, and thus generates
either 24-bit addresses or 31-bit addresses. As a result, those Assembler instructions
that allocate addresses explicitly (e.g. the LA instruction) react differently depending on
which addressing mode they are executed in. This manual describes these differences
in detail for each instruction involved.

V11.0 and higher of BS2000 support a new addressing mode, known as the AR mode
(access register mode) to expand the virtual address space;
(see Chapter 6, AR Mode).
New hardware (ESA systems) creates the opportunity of using more virtual address
spaces for data. These ESA (Enterprise System Architecture) systems support the
address space as before - now known as program space - plus additional data
spaces.
BS2000 can use the expanded memory space only if it receives notification to the effect
that it can use the expanded register set (access registers, see 2.2.2 and Chapter 6),
i.e., operate in AR mode (see SAC instruction, Chapter 6)

6 U3119-J-Z125-2-7600

Basic considerations Addressing main memory

2.1.4 Instruction addresses, instruction continuation addresses

Normally, an application program consists of instructions and data. Both are stored in
main memory, and both have (virtual) addresses. The address of an instruction, the
instruction address, is the address of its first byte; in all instructions, this byte contains
the so-called operation code. Each time an instruction is executed, the central
processing unit computes the instruction continuation address; this is the instruction
address incremented by the length (in bytes) of the current instruction. Unless the
current instruction is a branch instruction whose branch condition is satisfied, the
instruction continuation address is made the instruction address following execution of
the current instruction; processing then continues with the next instruction, or,
alternatively, at the address designated in the branch instruction as branch address.
Even in AR mode, the instruction address is always located in the program space. If
the instruction is a branch instruction, the corresponding access register is not
evaluated, which means that it is not possible to branch to an address space.

2.1.5 Operand addresses, address computation

All instructions read (write) their operands either from (to) registers or from (to) main
memory. In the case of register operands, the corresponding register number is defined
in an R field of the operand address. In the case of main memory operands, the main
memory address is computed from two components (three for RX instructions): the
base address, the displacement address and, if applicable, the index address.

Base and index addressing enable indirect ("pointer") access to operands; displacement
addressing enables addressing relative to a base or index address. Base addressing
especially enhances the portability of a program section within the address space of an
application program. Usually, a base address is the start address of a largish area of
(logically contiguous) data or instructions; the displacement of an individual item from
the start of this area (up to 4095 bytes) is then used as the displacement address.
Index addressing, which is permitted in conjunction with RX instructions, enables
doubly indirect access to operands, e.g. to items in a table within a table.

The effective address of a main memory operand is computed as the sum of

the base address, i.e. the 32-bit binary number in the general-purpose register
defined by the B field of an operand address (base register), plus

the displacement address, i.e. the 12-bit binary number which is specified directly in
the D field of an operand address, plus

the index address, i.e. the 32-bit binary number in the general-purpose register
defined by the X field in an operand address (index register). However, this sort of
index address is only available in conjunction with the so-called RX instructions.

U3119-J-Z125-2-7600 7

Addressing main memory Basic considerations

The addends are treated as unsigned binary numbers; any numbers carried beyond the
highest-order binary position are ignored. The sum is truncated to the 24 or 31 lowest-
order bits, depending on the addressing mode used, and the uppermost 8 bits or 1 bit
is set to 0. The result is then the (virtual) address of the operand, which is in most
cases the address of its first (highest-order) byte.

When the B field or the X field (or both) of an operand address is equal to 0, the
corresponding components are not included in the addition operation. It is therefore
impossible to use general-purpose register 0 for base addressing or index addressing.

In AR mode (see 2.1.3 and Chapter 6), the effective address is computed in the same
way as before (base address + displacement address + index address), but the
access register is not taken into account (see 2.2.2 and Chapter 6).

2.1.6 Alignment on halfword, word and doubleword boundaries

In addition to bits and bytes, the main memory elements word, halfword and
doubleword are also used.

A halfword is a 2-byte main memory area with a start address which is divisible by 2
without remainder, i.e. an even number. Similarly, a word is a 4-byte main memory area
whose start address is divisible by 4 without remainder, and a doubleword is an 8-byte
main memory area with a start address divisible by 8 without remainder. Conversely, an
address divisible by 2, 4 or 8, respectively, is commonly known as a "halfword
boundary", "word boundary" or "doubleword boundary".

In all central processing units, all instructions must be aligned on a halfword boundary;
this alignment is implemented automatically by Assembler [1]. The operands of many
instructions, moreover, must satisfy an alignment condition. Note that although this
second requirement applies only to certain central processing units (operand
misalignment in the L instruction, say, would cause an older central processing unit to
interrupt the program with weight ’5C’, whereas the newer central processing units
would process the operand), it is represented in this manual as it applies to the most
restrictive central processing unit. For the sake of performance, it is advisable to align
these operands on the appropriate boundaries even in programs that run on the newer
systems (see manual "ASSEMBH Reference Manual"). An Assembler program that
satisfies the alignment conditions for the operands as described in this manual therefore
results in maximum portability.

If an instruction presupposes that one of its operands is contained in a halfword, word
or doubleword, we say that this operand has to be "aligned on" a halfword boundary,
word boundary or doubleword boundary, depending on the case involved. For
example, all instructions require of binary numbers that the main memory areas for
these numbers be aligned. The alignment rule also applies to all floating-point numbers
in main memory, but not to decimal numbers and character fields.

8 U3119-J-Z125-2-7600

Basic considerations Addressing main memory

This yields the following relations:

> 0 1 2 3 4 5 6 7

byte byte byte byte byte byte byte byte
Addresses
mod 8 halfword halfword halfword halfword

word word

doubleword

U3119-J-Z125-2-7600 9

Registers Basic considerations

2.2 Registers

Almost all instructions require that one or more of their operands be contained in a
"register". Registers are storage areas with very high access speed which are
independent of main memory. There are three kinds of register: general-purpose
registers, access registers and floating-point registers.

2.2.1 General-purpose registers

Central processing units have 16 general-purpose registers at their disposal, numbered
from 0 to 15. Each register is 32 bits long, and can therefore accommodate 4 bytes or
one word. The general-purpose registers are used for base and index addressing or as
accumulators in arithmetic operations. When used as accumulators, they are defined in
instructions by explicitly specifying their register numbers; however, some instructions,
such as TRT, define their general-purpose registers implicitly.

Many instructions use the contents of two adjoining general-purpose registers as
operands. (These are then referred to as a general-purpose register pair.) In this case,
the first of the two registers (with their higher-order part of the operand) must always
be an even-numbered general-purpose register, and the second (with the lower-order
operand) is the adjoining odd-numbered general-purpose register. For operands of this
sort the even-numbered register is specified in the R field.

The general-purpose registers can also be used for the base addressing or index
addressing of operands. In these cases, the B or X field of an operand address defines
which register is used. However, the value 0 in a B or X field does not define general-
purpose register 0 as the base register or index register; instead, it defines that base or
index addressing is not to take place when computing the effective operand address.
For this reason, general-purpose register 0 cannot be used as a base register or index
register.

2.2.2 Access register

ESA systems have 16 access registers (ARs), numbered 0 to 15. Each register is 32
bits long, and can therefore accommodate 4 bytes or one word. The access registers
are used to access data spaces.
The 16 access registers (ARs) are uniquely assigned to the general-purpose registers.
If the B field (base register) of an operand address of contains the value 0, general-
purpose register 0 is not used to compute the effective operand address, nor is access
register 0 used to address a data space.

10 U3119-J-Z125-2-7600

Basic considerations Registers

2.2.3 Floating-point registers

Central processing units have 4 floating-point registers at their disposal, which can be
referenced only by floating-point instructions and used only for floating-point numbers.
Floating-point registers are defined by the numbers 0, 2, 4 or 6 in an R field of the
floating-point instructions. Each floating-point register is 64 bits long and can
accommodate a short or a long floating-point number. Short floating-point numbers are
stored in the leftmost 32 bits of a floating-point register; in all floating-point instructions
with short floating-point operand the rightmost 32 bits are ignored or left unchanged.
For extended (128-bit) floating-point numbers, two adjoining floating-point registers are
used, i.e. a floating-point register pair. The floating-point register pair can be either
floating-point registers 0 and 2 or floating-point registers 4 and 6. In these cases, the
number 0 or 4 must be specified in the R field for the extended floating-point operands.

U3119-J-Z125-2-7600 11

Condition code Basic considerations

2.3 Condition code

Most instructions "set the condition code", i.e. during execution they create a value in
an internal hardware register with the name "condition code". The condition code
(abbreviated CC) is 2 bits long and can be set to the values 010 or 110 or 210 or 310; it
will retain a set value until it is set to a different value by a subsequent instruction.

The condition code is used most frequently in compare operations. All compare
instructions set the condition code in accordance with the compare result they obtain,
i.e. to 0 if the two compared operands are identical and to 1 or 2 if the first operand is
less than or greater than the second. Following a compare instruction, the next
instruction can query the set condition code and, depending on its value, trigger
appropriate actions.

Each instruction description shows whether the instruction sets values in the condition
code, and if so, which values these are and what they mean. However, all instructions
(peculiarities arise with the instructions AL, ALR, SL, SPM and TM) that set the
condition code use the following common pattern for setting one of the four possible
values:

Value of CC Meaning

0 The result of the instruction is =0.
After a compare operation, this means that the first
operand is identical to the second operand.

1 The result of the instruction is <0.
After a compare operation, this means that the first
operand is less than the second operand.

2 The result of the instruction is >0.
After a compare operation, this means that the first
operand is greater than the second operand.

3 An overflow occurred during command execution.

To help the reader remember this table, wherever a condition code explicitly appears in
this manual we have included a mnemonic explanation which also suggests which
query instruction, if any, should be entered. For example, we have written "the condition
code is set to 2~High" to indicate that the instruction "Branch when High" may be used
to query this condition code value 2.

12 U3119-J-Z125-2-7600

Basic considerations Program interrupts

2.4 Program interrupts

If an abnormal condition is detected when an instruction is executed (e.g. wrong
operand or illegal data constellation), a program interrupt occurs. Unless special
arrangements for this eventuality have been made in the application program, the
BS2000 operating system will terminate the application program. If, however, a so-
called STXIT task has been defined in the application program (prior to the first
program interrupt), BS2000 will activate this task each time a program interrupt occurs,
so that the application program can handle the interrupt appropriately.

Every potential program interrupt is identified by its interrupt weight. The interrupt
weight is a two-digit hexadecimal number which is put in general-purpose register 3 for
the STXIT task (if this task exists) or output to SYSOUT at program termination (if no
STXIT task exists).

U3119-J-Z125-2-7600 13

Program interrupts Basic considerations

The following general pattern applies:

Type of program Interrupt General causes
interrupt weight

Address translation 48 An operand contains a virtual
error address which is not allocated

for the application program.
It is therefore not possible to
read- or write-access this
operand.

Privileged operation 54 The instruction invoked is not
an Assembler instruction, but
neither is it illegal.

Wrong operation code 58 An illegal instruction was
invoked.

Addressing error 5C A constraint on the instruction
(e.g. an alignment condition)
is not satisfied.

Data error 60 A decimal operand does not
contain a correct, packed
decimal number, or two decimal
operands incorrectly
overlap.

Exponent overflow 64 The resulting characteristic
in a floating-point operation
is > 127.

Division error 68 Division by zero or
quotient too large.

Significance 6C The resulting mantissa in a
floating-point operation = 0.

Exponent underflow 70 The resultant characteristic of
floating-point operation < 0.

Decimal overflow 74 The result of a decimal
operation is too large.

Fixed-point overflow 78 The result of a fixed-point
operation is too large.

14 U3119-J-Z125-2-7600

Basic considerations Program interrupts

The specific cause of each program interrupt is shown in each individual instruction
involved; exceptions include the program interrupt types privileged operation and
wrong operation code, which are not instruction-specific.

When a program interrupt occurs, execution of the instruction that caused the interrupt
is usually not finished and the result of the instruction is incorrect.

Maskable program interrupts, program mask

Program interrupts due to fixed-point overflow, decimal overflow, exponent underflow
and significance are maskable. This means that an application program can determine
whether a program interrupt should take place in these cases. Masking is performed in
the program mask, a 4-bit internal register in the central processing unit. Each of the 4
bits is assigned one of the above-mentioned program interrupts. A bit value of 1 means
that a program interrupt will take place when the corresponding cause occurs; a bit
value of 0 means that the interrupt will not take place. BS2000 presets all 4 bits to 1 at
application startup time so that the 4 program interrupts will take place by default.
However, the application program can change these presettings with the instruction
SPM, and can suppress any of these program interrupt types by setting one or all four
of the corresponding bits to zero.

The bits of the program mask have the following meaning:

Bit in program mask Meaning

0 Fixed-point overflow
1 Decimal overflow
2 Exponent underflow
3 Significance (mantissa=0)

Note

The BS2000 macro STXIT, which can be used to define STXIT tasks for program
interrupt handling, is described together with its parameters in "BS2000 Executive
Macros" [3].

U3119-J-Z125-2-7600 15

Data types Basic considerations

2.5 Data types

Assembler instructions make use of the following data types: character, character field,
binary number, bit field, decimal number and floating-point number. Of these, the data
types "decimal number" and "floating-point number" are described in Chapters 4 and 5,
where the decimal or floating-point instructions that use them are explained. The others
are described below.
(We have followed the common practice of using the data type itself as a name when
in fact what is meant is an instance of the data type: e.g. instead of the clumsy phrase
"data of data type X" we simply write "X".)

2.5.1 Characters and character fields

The character data type is intended for single characters which, for example, come
from a keyboard or are output to printer. Examples of data items of this sort include
the letters of our alphabet or punctuation marks in text.

Each character is represented by a single byte. The mapping of a character on the 8
bits of a byte is defined by the EBCDI code. This code defines, for example, that the
character ’A’ has the binary representation (11000001)2, i.e. hexadecimal (C1)16.
A complete EBCDIC table can be found in the appendix.

The character field data type is intended for a set of contiguous characters (= data of
data type "character"), e.g. for a linguistic word or even an entire text. A character field
is represented in main memory in consecutive bytes. It is identified to instructions that
process character fields by two specifications: the address of its first (highest-order)
byte, and its "length", i.e. the number of bytes included in the character field.

Comparing characters and character fields

Comparison of two operands of data type "character" or "character field" takes place bit
by bit from left to right; characters and character fields are treated as bit sequences. Bit
positions equidistant from the start of their respective operands are called "opposing".
The comparison ends when either all opposing bit positions in both operands are the
same, or two opposing bit positions are different. In the first case, the operands are
"identical". In the second case, they are "nonidentical"; the operand whose most
recently compared bit position is =0 is considered "less than" the other operand, which
is in turn "greater than" the first.

16 U3119-J-Z125-2-7600

Basic considerations Data types

2.5.2 Binary numbers

Along with the data types "decimal number" and "floating-point number" the binary
number data type is intended for data which is to be handled arithmetically, e.g. added
together.

Binary numbers are base 2 integers with an assumed binary point to the right of the
lowest-order binary position. Each binary position in a binary number is represented by
a bit, namely, from left to right in descending order of value.

Binary numbers occur in various lengths. The most frequent length is 32 bits long and
is used above all for fixed-point numbers (see below). However, there are also
instructions for 16-bit and 64-bit binary numbers.

Aligning binary numbers

Depending on their length, binary numbers require either 2, 4 or 8 consecutive bytes in
order to be stored in main memory. The address of the first byte must be aligned, i.e.
divisible by 2, 4 or 8, without remainder. We also say that binary numbers have to be
aligned on halfword, word or doubleword boundaries.

Signs of binary numbers

Binary numbers can be either signed or unsigned. Signed binary numbers are referred
to as fixed-point numbers; unsigned binary numbers do not have a name of their own.
The special features of both types are explained below.

Unsigned binary numbers

With unsigned binary numbers, all binary positions are used to represent the amount;
as a result, when arithmetic and compare operations are performed, all binary positions
are involved in the operation. The terms "positive" and "negative" are irrelevant for
binary numbers of this sort.

The value range of b-bit unsigned binary numbers ranges from 0 to 2b-1. The (least)
unsigned binary number with the value 0 is represented entirely by null bits; the
(greatest) unsigned binary number with the value 2b-1 is represented entirely by 1 bits.

U3119-J-Z125-2-7600 17

Data types Basic considerations

Signed binary numbers (fixed-point numbers)

With signed binary numbers - called fixed-point numbers - the highest-order binary
position is used for the sign; the binary positions to the right of the sign represent the
numeric value of the fixed-point number:

Positive fixed-point numbers are represented by their (absolute) value and have a
null bit at the highest-order binary position.

Negative fixed-point numbers are represented by the twos complement (absolute)
value and have a 1 bit at the highest-order binary position.

The twos complement of a number is defined as the difference between 0 and the
amount of this number. Any carry over beyond the highest-order binary position is
ignored.

The table below shows some selected values from the value range of a 32 bit fixed-
point number (in binary and hexadecimal format):

Fixed-point number Binary representation Hex. representation

< 32 bits >
0 0000..........0000 00 00 00 00

+1 0000..........0001 00 00 00 01
+2 0000..........0010 00 00 00 02

.

.
+2147483647 = +2 31-1 0111..........1111 7F FF FF FF

-1 1111..........1111 FF FF FF FF
-2 1111..........1110 FF FF FF FE

.

.
-2147483648 = -2 31 1000..........0000 80 00 00 00

Fixed-point numbers have the following essential attributes:

The value range of positive b-bit fixed-point numbers is from 0 to 2b-1-1; the value
range of negative, b-bit fixed-point numbers is from -1 to -2b-1. Thus, for 32-bit fixed-
point numbers the value range lies between -231=-2147483648 and
+231-1=+2147483647. Therefore, the least negative fixed-point number does not
have a positive pendant.

The set of fixed-point numbers greater than 0 is one member larger than the set of
fixed-point numbers less than 0.

Negative zero does not exist.

The most significant binary position of a (positive or negative) fixed-point number is
the highest-order binary position other than the sign bit.

18 U3119-J-Z125-2-7600

Basic considerations Data types

Note

Alternative methods for forming the twos complement of a binary number include:

1. Inverting all bit positions of the binary number, adding +1 to the result and ignoring
any carry over beyond the highest- order binary position.

2. Inverting all bit positions to the left of the lowest-order 1 and leaving unchanged the
lowest-order 1 and all binary positions to the right of it (they are all =0).

Signed and unsigned binary arithmetic

There are two different kinds of binary arithmetic: signed and unsigned (or logical).
In signed binary arithmetic, the highest-order binary position of each operand and of
the result is handled separately as a sign, whereas in unsigned binary arithmetic the
highest-order binary position is handled in exactly the same way as the other binary
positions. The following differences exist with regard to the individual arithmetic
operations.

Addition and subtraction of binary numbers

Signed addition is performed by adding all the binary positions of both addends,
including the sign positions. If one of the addends is shorter than the other, it is treated
as if it were padded to the length of the longer addend, using binary digits which are
identical to the value of the sign position.

Unsigned addition likewise consists in adding all the binary positions of both addends.
If, however, one addend is shorter than the other, it is treated as though it were
padded to the left to the length of the longer addend, using binary digits with the value
0. All address computations
are performed by means of unsigned addition.

Signed (and unsigned) subtraction is identical to the signed (or unsigned) addition of
the ones complement of the second operand and the number 1 to the first operand.
(The ones complement of a binary number is obtained by inverting all bit positions in
the number.)

The difference between signed and unsigned addition or subtraction lies in the way the
result is interpreted:

With unsigned addition or subtraction, the result is interpreted as an unsigned binary
number; the condition code shows whether the result is =0 or 0 and whether an
overflow did or did not occur from the highestorder binary position, i.e. a carry over
beyond binary position 0.

U3119-J-Z125-2-7600 19

Data types Basic considerations

With signed addition, or subtraction, the result is interpreted as a signed binary
number (fixed-point number); the condition code shows whether the result = 0, <0
or >0, or whether a fixed-point overflow occurred.
A fixed-point overflow occurs when any binary position overflow to the sign position
of the result is not equal to the binary position overflow from the sign position.
Arithmetically speaking, when 32-bit fixed-point numbers are used, this means that
the result is greater than +231-1 or less than -231. With fixed-point overflow, the
condition code is set to 3~Overflow; in addition, a program interrupt occurs,
provided the bit for fixed-point overflow is set to 1 in the program mask (default
value in BS2000).

Left or right shifting of binary numbers

Signed shifting of a binary number handles the sign position separately, whereas
unsigned shifting does not.

In signed shifting, the sign position always remains the same and only those binary
digits from bit position 1 are shifted. In shift right, binary positions freed to the left are
filled with the bit value of the sign position; in shift left, binary positions freed to the
right are filled with 0. If, during shift left, significant binary positions (i.e. those other
than the sign position) are shifted to the left of bit position 1, fixed-point overflow
occurs; the condition code is set to 3~Overflow, and in addition a program interrupt
occurs if the fixed-point overflow bit in the program mask is set to 1 (default value in
BS2000).

In an unsigned shift left or unsigned shift right, all binary positions, including the sign
position, are shifted. In shift right, binary positions freed to the left are padded with 0;
in shift left, binary positions freed to the right are padded with 0. The condition code is
not changed by unsigned shifting.

Comparison of binary numbers

Signed comparison of two binary numbers is performed in the same way as a signed
subtraction operation for which the result is not stored. The condition code is set to
0~Equal, or 1~Low, or 2~High, depending on whether the first operand is equal to or
less than or greater than the second. Fixed-point overflow cannot occur.

Unsigned comparison of two binary numbers consists of a bit-by-bit comparison of
both numbers from left to right. The comparison terminates either when the two
operands have been processed or if two opposing bits are different. If the operands are
identical, the condition code is set to 0~Equal; if they are not identical, the condition
code is set to 1~Low or 2~High, depending on whether the last bit position compared
in the first operand was =0 or =1.

20 U3119-J-Z125-2-7600

Basic considerations Data types

2.5.3 Bit field

The bit field data type is a data type for sequences of single-bit values. Each bit value
is represented in a bit position. In bit field instructions, the individual bit positions are
handled independently of the remaining bit positions. Bit fields start or end at byte
boundaries. The bit positions in a bit field are usually numbered from left to right
starting at 0, but this convention is immaterial to the central processing unit.

One frequent application of the bit field data type is its use in masks. Masks are used
for selecting individual bits or bytes in a register or in main memory or in the
subsequent actions of an instruction. Their concrete meaning and effect are described
under those individual instructions that make use of masks.

U3119-J-Z125-2-7600 21

Instruction format Basic considerations

2.6 Instruction format

Every instruction consists of two parts:

1. the operation code, which determines the instruction’s action and

2. the specification of its operands.

All instructions must be aligned on halfword boundaries in main memory. Depending on
the type of instruction involved, instructions are either 2, 4 or 6 bytes long.

Instruction types

The following general instruction types exist:

1. Instruction type RR

For instructions with two register operands or with one register operand and one mask.

R1
[RR] OP R2

M1

0 8 12 15

2. Instruction type RRE

For instructions with extended operation code and two register operands.

[RRE] OP ///////// R1 R2

0 16 24 28 31

In instructions of this type, bit positions 16 to 23 are ignored.

3. Instruction type RX

For instructions with one register operand or with one mask and one indexed main
memory operand.

R1
[RX] OP X2 B2 D2

M1

0 8 12 16 20 31

22 U3119-J-Z125-2-7600

Basic considerations Instruction format

4. Instruction type RS

For instructions with two register operands and one main memory operand, or with one
register operand and one main memory operand and one mask.

R3
[RS] OP R1 B2 D2

M3

0 8 12 16 20 31

5. Instruction type SI

For instructions with one main memory operand and one direct operand.

[SI] OP I2 B1 D1

0 8 16 20 31

6. Instruction type S

For instructions with extended operation code and one main memory operand.

[S] OP B2 D2

0 16 20 31

7. Instruction type SS

For instructions with two memory operands of identical or nonidentical operand length.
The L, L1 and L2 fields contain the length minus 1.

L-1
[SS] OP B1 D1 B2 D2

L1-1 L2-1

0 8 12 16 20 32 36 47

U3119-J-Z125-2-7600 23

Instruction format Basic considerations

Legend

The abbreviations on the formats above have the following meanings:

Name Length Meaning

OP 8/16 bits Operation code
R1,R2,R3 4 bits General-purpose,access or floating-point register
M1,M3 4 bits Mask
B1,B2 4 bits Base register
X1,X2 4 bits Index register
D1,D2 12 bits Displacement address
I2 8 bits Direct operand
L-1 8 bits Operand length minus 1
L1-1, L2-1 4 bits Operand length minus 1

The operation code (OP) is an instruction-specific hexadecimal number of two or four
characters. It is named in every instruction and is represented in Assembler notation,
e.g. by X’D1’ for the instruction MVN. The first two bit positions of the operation code
determine the length of the instruction as follows:

Bit pos. 0 and 1 of Instruction Length of instruction
the operation code type(s)

00 RR 2 bytes
01 RX 4 bytes
10 RRE/RS/S/SI 4 bytes
11 SS 6 bytes

Instruction operands

The operands involved in operation execution are defined to the right of the operation
code in instruction-specific fields. Depending on the instruction type concerned, up to
three operands are involved in an instruction. In this manual, they are called operand1,
operand2 and operand3. The parameter values of these operands are distinguished in
the instruction by the suffixes "1", "2" and "3".

Instruction operands may be stored either directly in the instruction, or separately from
the instruction either in a (general-purpose or floating-point) register or in main memory.
Depending on the method used, they are called direct operands, register operands or
main memory operands.

A direct operand is represented as a bit field in the instruction using either an M field
or an I field.

A register operand is defined by specifying the corresponding 4-bit register number in
an R field. The instruction then defines whether the register involved is a general-
purpose register, an access register or a floating-point register.

24 U3119-J-Z125-2-7600

Basic considerations Instruction format

A main memory operand is defined by the address (of its highest-order byte) and by
its length (in bytes). Its address is either obtained from an address computation or is
taken as a ready-made address from a general-purpose register. Address computation
consists of the unsigned addition of a displacement address (defined in a D field) and
the contents of one or two general-purpose registers whose register numbers are
defined in a B field and an X field (see above, "Address computation"). If so-called
symbolic addresses of instructions and data are used, the Assembler [1] computes the
address components B and D itself.

The length of a main memory operand is defined either implicitly by the instruction or
explicitly in the instruction. In the case of implicit length, it is represented in the
instruction description; in the case of explicit length (in SS-type instructions), the
operand length is defined in the instruction by its value minus 1, using one of the fields
indicated in the above diagram by "L-1" or "L1-1" or "L2-1". (The Assembler [1] generates
the contents of these length fields automatically by reducing the operand length by 1.)

U3119-J-Z125-2-7600 25

General instructions A, AR

3 General instructions

Add

Function

The instructions AR and A perform signed addition of two 32-bit fixed-point numbers.
The condition code is set in accordance with the value of the sum.

Assembler formats

Name Operation Operands Remarks

AR R1,R2
A R1,D2(X2,B2) D2(X2,B2): word boundary

Machine formats

AR [RR] X’1A’ R1 R2

A [RX] X’5A’ R1 X2 B2 D2

0 8 12 16 20 31

Description

The AR instruction causes signed addition of the contents of general-purpose register
R2 and that of general-purpose register R1. The A instruction causes addition of the
word addressed by D2(X2,B2) and the contents of general-purpose register R1. Both
operands are treated as 32-bit fixed-point numbers. The sum is also a 32-bit fixed-point
number and replaces the original contents of general-purpose register R1.

U3119-J-Z125-2-7600 27

A, AR General instructions

Fixed-point overflow results when the sum is greater than 231-1 or less than -231. In this
case, the result in R1 is too large or too small by 232; the condition code is then set to
3~Overflow and a program interrupt takes place, provided the fixed-point overflow bit is
set to 1 in the program mask (default in BS2000).

Condition code

0~Zero sum = 0
1~Minus sum < 0
2~Plus sum > 0
3~Overflow fixed-point overflow

Program interrupts

Type Weight Causes

Address trans. error X’48’ A: Read access of operand 2 illegal.
Address error X’5C’ A: D2(X2,B2) not a word boundary.
Fixed-point overflow X’78’ Sum > +2 31-1 or < -2 31.

Programming notes

Fixed-point overflow occurs when a binary position overflow to the sign position is not
equal to the binary position overflow from the sign position. The result in register R1
then has an incorrect sign.

Examples

Name Operation Operands

.
Example1 L 15,=F’-2147483647’ Reg 15: X’80000001’ =-2 31+1

A 15,=F’-1’ Reg 15: X’80000000’ =-2 31

* CC: 1~Minus
.

Example2 LM 15,0,=F’2147483647’ Reg 15: X’7FFFFFFF’ =+2 31-1
* LA 0,1 Reg 0 : 1

AR 15,0 Reg 15: X’80000000’ =-2 31

* CC: 3~Overflow and possibly
* program interrupt due to
* fixed-point overflow

.

The condition code 3~Overflow in example 2 indicates that the result is arithmetically
incorrect.

28 U3119-J-Z125-2-7600

General instructions AH

Add Halfword

Function

The AH instruction performs signed addition of a 16-bit fixed-point number and a 32-bit
fixed-point number.
The condition code is set in accordance with the value of the sum.

Assembler format

Name Operation Operands Remarks

AH R1,D2(X2,B2) D2(X2,B2): halfword boundary

Machine format

AH [RX] X’4A’ R1 X2 B2 D2

0 8 12 16 20 31

Description

This instruction performs signed addition of the halfword addressed by D2(X2,B2) in
main memory and the contents of general-purpose register R1. The register operand is
treated as a 32-bit fixed-point number, the halfword operand as a 16-bit fixed-point
number, both of them signed. The sum is a 32-bit signed fixed-point number; it
replaces the original contents of general-purpose register R1.

Fixed-point overflow results when the sum is greater than 231-1 or less than -231. In this
case, the result in R1 is too large or too small by 232; the condition code is then set to
3~Overflow and a program interrupt takes place, provided the fixed-point overflow bit is
set to 1 in the program mask (default in BS2000).

Condition code

0~Zero Sum = 0
1~Minus Sum < 0
2~Plus Sum > 0
3~Overflow fixed-point overflow

U3119-J-Z125-2-7600 29

AH General instructions

Program interrupts

Art Weight Causes

Address trans. error X’48’ A: Read access of operand 2 illegal.
Address error X’5C’ A: D2(X2,B2) not a word boundary.
Fixed-point overflow X’78’ Sum > +2 31-1 or < -2 31

Programming notes

Fixed-point overflow occurs when a binary position overflow to the sign position is not
equal to the binary position overflow from the sign position. The result in register R1
then has an incorrect sign.

Example

Name Operation Operands

.
L 13,=F’16999999’
AH 13,=H’+1’ Register 13: F’17000000’

* CC 2~Plus
.

In many programs, simple register incrementation of this sort is performed with the
instruction LA 13,1(13) rather than with the instruction AH 13,=H’+1’, as in this
example. However, an LA instruction of this sort would be meaningless in this example:
if the program is running in 24-bit addressing mode, the LA instruction does not yield
the (presumably desired) result 17000000, but rather a completely different result,
namely 222784 (i.e. 17000000 mod 224). Only if the program is executed in 31-bit
addressing mode does LA yield the value 17000000. Addresses of the sort created by
the LA instruction are not the same thing as fixed-point numbers.

30 U3119-J-Z125-2-7600

General instructions AL, ALR

Add Logical

Function

The instructions ALR and AL perform unsigned (logical) addition of two 32-bit binary
numbers.
The condition code is set in accordance with the value of the sum.

Assembler formats

Name Operation Operands Remarks

ALR R1,R2
AL R1,D2(X2,B2) D2(X2,B2): word boundary

Machine formats

ALR [RR] X’1E’ R1 R2

AL [RX] X’5E’ R1 X2 B2 D2

0 8 12 16 20 31

Description

The ALR instruction performs unsigned addition of the contents of general-purpose
register R2 and the contents of general-purpose register R1. The AL instruction
performs unsigned addition of the word addressed by D2(X2,B2) in main memory and
the contents of general-purpose register R1.

The sum is a 32-bit unsigned binary number. It replaces the original contents of
general-purpose register R1.

All 32 bits of each operand are involved in the addition operation. Any carry over
beyond bit position 0 is shown in the condition code.

Condition code

0~Zero Sum =0, no carry over
1~Minus Sum 0, no carry over
2~Plus Sum =0, carry over
3~Overflow Sum 0, carry over

U3119-J-Z125-2-7600 31

AL, ALR General instructions

Program interrupts

Type Weight Causes

Address trans. error X’48’ AL: Read access of operand2 illegal.
Address error X’5C’ AL: D2(X2,B2) not a word boundary.

Programming notes

The condition code 0~Zero is set only when both operands =0.

The AL instruction can be used for signed addition of fixed-point numbers which are
more than 32 bits long. In this case, AL instructions are used to add the lowest-
order word pairs, followed by instruction A to add the highest-order word pairs; if
carry over occurs when adding a lower-order word pair, the number +1 must be
added to the sum of the next highest word pair (see example 2).

Examples

Name Operation Operands

.
Example1 L 15,=F’-1’

AL 15,=F’1’ Register 15: 0, CC: 2~Plus
.

Example2 LM 0,1,FPNO1 Addition of two 64-bit fixed-
LOWADD AL 1,FPNO2+4 point numbers.

BC 12,HIGHADD
AH 0,=H’1’ Carry over in right portion.

HIGHADD A 0,FPNO2
.

Example2 illustrates signed addition of two 64-bit fixed-point numbers FPNO1 and
FPNO2. the lower-order word pair is added using AL and the higher-order word pair is
added using A. If a carry over occurs when adding the lower-order word pair, +1 must
be added to the sum of the higher-order word pair. In the above example, the result is
located in general-purpose registers 0 and 1.

32 U3119-J-Z125-2-7600

General instructions BAL, BALR

Branch and Link

Function

The instructions BALR and BAL store the instruction continuation address in a specified
general-purpose register and then branch to a specified address.
The condition code is left unchanged.

Assembler formats

Name Operation Operands Remarks

BALR R1,R2
BAL R1,D2(X2,B2)

Machine formats

BALR [RR] X’05’ R1 R2

BAL [RX] X’45’ R1 X2 B2 D2

0 8 12 16 20 31

Description

The instructions BALR and BAL first store the instruction continuation address in
general-purpose register R1.
The format of the stored address depends on the addressing mode used:

24-bit addressing mode:

ILC CC PM 24-bit instruction continuation address

0 2 3 4 7 8 31

31-bit addressing mode:

A 31-bit instruction continuation address

0 1 31

U3119-J-Z125-2-7600 33

BAL, BALR General instructions

Where:

ILC instruction length code; 012 for BALR and 102 for BAL.

CC condition code; current value of CC: 0, 1, 2 or 3

PM current value of program mask:
BS2000 default is F16, but this value can be changed by the application
programing using SPM.

A addressing mode; =1 for 31-bit addressing mode.

Once the instruction continuation address has been stored, the BALR instruction
branches to the address contained in general-purpose register R2, and the BAL
instruction branches to the address D2(X2,B2). (This address is either 24 or 31 bits
long, depending on which addressing mode is used.) BALR does not branch if the R2
field is =0. In any case, the current addressing mode remains the same.

The branch address is computed before general-purpose register R1 is changed.

Condition code

Stays the same.

Program interrupts

None with the instruction itself.
However, if the target address is not a halfword address, or if it cannot be accessed, a
corresponding program interrupt (with the weight 5C16 or 4816) will take place at the
target address.

Programming notes

To return from a subprogram called with BALR or BAL, you should use the
instruction BCR (or BC), it is not possible to use the instruction BSM for this
purpose if the subprogram was called by means of BAL and the call took place in
24-bit addressing mode.

When a BALR instruction is executed directly, the "instruction continuation address"
is the instruction address plus 2; with BAL it is the instruction address plus 4.
However, if a BALR or BAL instruction is executed using the EX instruction, the
instruction continuation address is the instruction address of this EX plus 4.

34 U3119-J-Z125-2-7600

General instructions BAL, BALR

Note that in 24-bit addressing mode the instructions BALR and BAL do not create
"genuine" 24-bit addresses in general-purpose register R1. Instead, they supply non-
address information to the highest-order byte. This makes these instructions
unsuitable for use in programs which are designed to run in both 24-bit and 31-bit
addressing mode. In programs of this sort, the instructions BAS or BASR should be
used instead of BAL or BALR. (The condition code values (CC) supplied by the BAL
and BALR instructions, or the values of the program mask (P’Mask), may be
obtained in portable form using the instruction IPM).

Note the following difference between BALR and BAL: With BALR, the branch
address is determined by the contents of the second operand, whereas with BAL it
is determined by the address of the second operand.

U3119-J-Z125-2-7600 35

BAS, BASR General instructions

Branch and Save

Function

The instructions BASR and BAS store the current addressing mode and the instruction
continuation address in a general-purpose register and branch to a specified address
while staying in the current addressing mode.
The condition code is left unchanged.

Assembler formats

Name Operation Operands Remarks

BASR R1,R2
BAS R1,D2(X2,B2)

Machine formats

BASR [RR] X’0D’ R1 R2

BAS [RX] X’4D’ R1 X2 B2 D2

0 8 12 16 20 31

Description

The current addressing mode is stored in bit position 0 of general-purpose register R1,
and the instruction continuation address in bit positions 1 to 31 of general-purpose
register R1. The 24-bit addressing mode is shown by the value 0 in bit position 0; the
31-bit addressing mode is shown by the value 1 in bit position 0.

With BASR, a branch then takes place to the address contained in general-purpose
register R2; with BAS, a branch takes place to the address D2(X2,B2). In both cases,
the addressing mode remains the same. This address is either 24 or 31 bits long,
depending on the addressing mode used. If, with BASR, the R2 field is =0, no branch
takes place; instead, processing continues with the next instruction.

The branch address is determined before general-purpose register R1 is changed.

Condition code

Stays the same.

36 U3119-J-Z125-2-7600

General instructions BAS, BASR

Program interrupts

None with the instruction itself.
However, if the target address is not a halfword address, or if it cannot be accessed, a
corresponding program interrupt (with the weight 5C16 or 4816) will take place at the
target address.

Programming notes

The instructions BASR and BAS are used for calling a subprogram running in the
same addressing mode as the calling program.

Calling BASR with an R2 field =0 causes only the current addressing mode and the
instruction continuation address to be stored in general-purpose register R1, i.e. no
branch takes place. This can be used, for example, to obtain a "base address", e.g.
in the instruction sequence

BASR 3,0
USING *,3

Normally, the instruction BCR (or BC) is used to return from a subprogram called
with BASR or BAS. However, on central processing units which have 31-bit
addressing mode at their disposal, this can also be accomplished using the
instruction BSM.

When a BASR instruction is executed directly, the "instruction continuation address"
is the instruction address plus 2; with BAS it is the instruction address plus 4.
However, if a BASR or BAS instruction is executed using the EX instruction, the
instruction continuation address is the instruction address of this EX plus 4.

The instructions BASR and BAS have the same effect as the instructions BALR and
BAL. However, BASR and BAS create genuine instruction continuation
addresses, even in 24-bit addressing mode, and they do not supply the
highest-order byte in general-purpose register R1 with non-address information (e.g.
ILC) which might cause problems in 31-bit addressing mode. Nevertheless, the
instructions BASR and BAS are not available in the instruction set of older central
processing units.

Note the following difference between BASR and BAS: With BASR, the branch
address is determined by the contents of the second operand, whereas with BAS it
is determined by the address of the second operand.

U3119-J-Z125-2-7600 37

BAS, BASR General instructions

Example

The BASR instruction can be employed as follows in order to perform a subprogram
branch from program section A to program section B, both of which are running in the
same addressing mode (24-bit or 31-bit) but are assembled in different assembly units:

Name Operation Operands Name Operation Operands

*
A CSECT > B CSECT
A AMODE 31 B AMODE 31

. .
L 15,=V(B) .
BASR 14,15 .

. < .

. .

. BR 14
* . .

38 U3119-J-Z125-2-7600

General instructions BASSM

Branch and Save and Set Mode

Function

The BASSM instruction stores the current addressing mode and the instruction
continuation address in a general-purpose register. It then sets a specified addressing
mode and branches in this mode to a specified address.
The condition code is left unchanged.
The BASSM instruction is available only in the instruction set of central processing units
which have 31-bit addressing mode at their disposal.

Assembler format

Name Operation Operands Remarks

BASSM R1,R2

Machine format

BASSM [RR] X’0C’ R1 R2

0 8 12 15

Description

The current addressing mode is stored in bit position 0 of general-purpose register R1,
and the instruction continuation address is stored in bit positions 1 to 31 of general-
purpose register R1.

Then, if the R2 field 0, the addressing mode resulting from bit 0 of general-purpose
register R2 is set, and a branch is performed in this mode to the address contained in
bit positions 1 to 31 of R2. This address is 24 or 31 bits long, depending on the
addressing mode used. If the R2 field =0, no branch takes place; instead, processing
continues with the next instruction in the current addressing mode.

In general-purpose registers R1 and R2, a value 0 at bit position 0 indicates 24-bit
addressing mode, and a value 1 indicates 31-bit addressing mode.

The branch address is determined before general-purpose register R1 is changed.

Condition code

Stays the same.

U3119-J-Z125-2-7600 39

BASSM General instructions

Program interrupts

None with the instruction itself.
However, if the target address is not a halfword address, or if it cannot be accessed, a
corresponding program interrupt (with the weight 5C16 or 4816) will take place at the
target address.

Programming notes

The BASSM instruction is used to call a subprogram running in an addressing mode
which is the same as or different from that of the calling program.

When a BASSM instruction is executed directly, the "instruction continuation
address" is the instruction address plus 2; when, however the BASSM instruction is
executed by means of the instruction EX, the instruction continuation address is the
address of this EX, plus 4.

The BASSM instruction is available only on central processing units which have
31-bit addressing mode at their disposal. In order to make an Assembler program
independent of the central processing unit on which it is running, the macro
##BASSM is provided in the BS2000 macro instruction set (V9.0 and successors).
This macro "switches on" the BASSM instruction. The ##BASSM macro generates
the BASSM instruction on systems with 31-bit addressing mode, and the BALR
instruction on systems which only have 24-bit addressing mode at their disposal.
A complete discussion of the addressing modes and the various forms of program
linkage can be found in the manual "Introduction to XS Programming (for
ASSEMBLER Programmers)" [2].

The BSM instruction should be used for returning from a subprogram called with
BASSM in order to ensure that the addressing mode of the calling program will
again be in effect.

40 U3119-J-Z125-2-7600

General instructions BASSM

Example

The BASSM instruction can be employed as follows in order to perform a subprogram
branch from program section A (running in 24-bit addressing mode) to program section
B (running in 31-bit addressing mode):

Name Operation Operands Name Operation Operands

. .
A CSECT > B CSECT
A AMODE 24 B AMODE 31

. .
L 15,=V(B) .
O 15,AM31 .
BASSM 14,15 .

. < .

. .

. BSM 0,14
DS 0F .

AM31 DC X’80000000’ .
. .

U3119-J-Z125-2-7600 41

BC, BCR General instructions

Branch on Condition

Function

The instructions BCR and BC cause a branch to a specified address depending on the
current value of the condition code.
The condition code is left unchanged.

Assembler formats

Name Operation Operands Remarks

BCR M1,R2 B’0000’ M1 B’1111’
BC M1,D2(X2,B2) B’0000’ M1 B’1111’

Machine formats

BCR [RR] X’07’ M1 R2

BC [RX] X’47’ M1 X2 B2 D2

0 8 12 16 20 31

Description

The "mask" M1 is a 4-bit field. Its 4 bit positions, from left to right, correspond as
follows to the 4 possible values of the condition code:

Value Bit position Value
of CC of mask M1 of mask M1

0 0 8
1 1 4
2 2 2
3 3 1

If the condition code has the value i at the time the instruction is executed, and bit
position i in mask M1 =1, the BCR instruction branches to the address contained in
general-purpose register R2, and the BC instruction branches to the address D2(X2,B2).
This address is 24 or 31 bits long, depending on the addressing mode used. If bit
position i in mask M1 =0, no branch takes place; instead, processing continues with
the next instruction. Similarly, no branch takes place for the BCR instruction when the
R2 field =0.

42 U3119-J-Z125-2-7600

General instructions BC, BCR

Condition code

Stays the same.

Program interrupts

None with the instruction itself.
However, if the target address is not a halfword address, or if it cannot be accessed, a
corresponding program interrupt (with the weight 5C16 or 4816) will take place at the
target address.

U3119-J-Z125-2-7600 43

BC, BCR General instructions

Programming notes

It is possible that more than one or no bit position in mask M1 =1; a branch takes
place for every condition code value whose corresponding mask bit =1.
Accordingly, a branch will take place in every case if mask M1 consists entirely of
ones, and never if it consists entirely of zeros.

The assembler considerably simplifies the writing of BCR and BC instructions: for
both instructions, and for all meaningful bit combinations in the mask, it has at its
disposal so-called "extended mnemonic operation codes" that create BC and BCR
instructions including mask. For example, from the mnemonic operation code BE
the assembler [1] creates a BC instruction with the mask B’1000’ (=8), which can
be written following arithmetic compare operations if a branch is to take place with
CC =0 (i.e. equivalence). This means that the author of the program does not have
to memorize the above table, and the reader of the program will be able to
understand the control flow. For further information, see the complete table of
"extended mnemonic operation codes" in the appendix.

Note the following difference between BCR and BC: With BCR the branch address is
determined by the contents of the second operand, whereas with BC it is
determined by the address of the second operand.

44 U3119-J-Z125-2-7600

General instructions BC, BCR

Example

Name Operation Operands

.
Example1 CL 4,5

BC 7,AGAIN Branch when CC �0
* using mask = 7 10 = (0111) 2

.
Example2 TM SEMAPHOR,X’80’

BO ON Extended mnemonic operation
* code BO;
* causes branch when CC =3 using
* mask =1 10 =(0001) 2

.
Example3 BR 14 Extended mnemonic operation
* code BR;
* causes unconditional branch
* using mask =15 10 =(1111) 2.
* Branch destination: address
* in register 14.

.

U3119-J-Z125-2-7600 45

BCT, BCTR General instructions

Branch on Count

Function

The instructions BCTR and BCT decrement the contents of a specified register by one
and branch to a specified address when the resulting register has a value 0.
The condition code is left unchanged.

Assembler formats

Name Operation Operands Remarks

BCTR R1,R2
BCT R1,D2(X2,B2)

Machine formats

BCTR [RR] X’06’ R1 R2

BCT [RX] X’46’ R1 X2 B2 D2

0 8 12 16 20 31

Description

The number 1 is subtracted from the binary number in general-purpose register R1: any
carry over beyond the higher-order bit position will be ignored. If the result 0, the
BCTR instruction branches to the address contained in general-purpose register R2,
and the BCR instruction to the address D2(X2,B2). This address is 24 or 31 bits long,
depending on the addressing mode used. If the result =0, no branch takes place;
instead, processing continues with the next instruction. Similarly, no branch takes place
for the BCTR instruction when the R2 field =0.

The branch address is determined before general-purpose register R1 is changed.

Condition code

Stays the same.

46 U3119-J-Z125-2-7600

General instructions BCT, BCTR

Program interrupts

None with the instruction itself.
However, if a branch actually does take place, and if the target address is not a
halfword address or cannot be accessed, a corresponding program interrupt (with
weight 5C16 or 4816) will take place at the target address.

Programming notes

The contents of general-purpose register R1 can be regarded equally as a signed or
an unsigned number, since in both cases subtracting 1 yields the same result.

Note the following borderline cases: When register R1 has the contents -231,
subtracting 1 yields the contents +231-1; when it has the contents 0, subtracting 1
yields the contents -1. Therefore, a branch will take place in both cases. The only
time a branch will not take place is when general-purpose register R1 contains the
value +1 prior to the BCTR or BCT instruction (or, with the BCTR instruction, when
the R2 field is =0).

Note the following difference between BCTR and BCT: With BCTR the branch
address is determined by the contents of the second operand, whereas with BCT it
is determined by the address of the second operand.

Example

Name Operation Operands

.
LH 5,=H’100’

AGAIN EQU *
.
.
.

BCT 5,AGAIN
.

In the above example, AGAIN is run through exactly 100 times.

U3119-J-Z125-2-7600 47

BSM General instructions

Branch and Set Mode

Function

The BSM instruction stores the current addressing mode; it then sets a specified
addressing mode and branches in this mode to a specified address.
The condition code is left unchanged.
The BSM instruction is only available in the instruction set of central processing units
which have 31-bit addressing mode at their disposal.

Assembler format

Name Operation Operands Remarks

BSM R1,R2

Machine format

BSM [RR] X’0B’ R1 R2

0 8 12 15

Description

If the R1 field 0, the current addressing mode is stored in bit position 0 of general-
purpose register R1; bit positions 1 to 31 remain unchanged. If the R1 field =0, the
current addressing mode is not stored.

Then, if the R2 field 0, the addressing mode resulting from bit 0 of general-purpose
register R2 is set, and a branch is performed in this mode to the address contained in
bit positions 1 to 31 of R2. This address is 24 or 31 bits long, depending on the
addressing mode used. If the R2 field =0, no branch takes place; instead, processing
continues with the next instruction in the current addressing mode.

In both general-purpose registers R1 and R2, a value 0 at bit position 0 indicates 24-bit
addressing mode, and a value 1 indicates 31-bit addressing mode.

The branch address is determined before general-purpose register R1 is changed

Condition code

Stays the same.

48 U3119-J-Z125-2-7600

General instructions BSM

Program interrupts

None with the instruction itself.
However, if the target address is not a halfword address or cannot be accessed, a
corresponding program interrupt (with weight 5C16 or 4816) will take place at the target
address.

Programming notes

The BSM instruction is used primarily for returning from a subprogram that was
called with one of the instructions BASR, BAS or BASSM. However, the instruction
can also be used in other cases as an unconditional branch.

Take care not to use the BSM instruction to return from a subprogram that was
called with the BAL instruction. Namely, if the calling program is running in 24-bit
addressing mode, the wrong addressing mode may govern the calling program
following the return (due to the ILC value (10)2 in bit positions 0 and 1 of the
instruction continuation address). Subprograms called with BALR or BAL should be
exited with the instruction BCR or BC.

The BSM instruction is only available on central processing units which have 31-bit
addressing mode at their disposal. In order to make an Assembler program
independent of the central processing unit on which it is running, the macro
##BSM is provided in the BS2000 macro instruction set (V9.0 and successors). This
macro "switches on" the BSM instruction. The ##BSM macro generates the BSM
instruction on systems with 31-bit addressing mode, and the BR instruction on
systems which only have 24-bit addressing mode at their disposal.
A complete discussion of the addressing modes and the various forms of program
linkage can be found in the manual "Introduction to XS Programming (for
ASSEMBLER Programmers)" [2].

Example

See example under BASSM for use of BSM.

U3119-J-Z125-2-7600 49

BXH, BXLE General instructions

Branch on Index

Function

The instructions BXH and BXLE perform signed addition of the contents of a general-
purpose register and the contents of another general-purpose register. They then
branch to a specified address if the resultant sum is greater than (BXH) or less than or
equal to (BXLE) the contents of a third general-purpose register.
The condition code is left unchanged.

Assembler formats

Name Operation Operands Remarks

BXH R1,R3,D2(B2)
BXLE R1,R3,D2(B2)

Machine formats

BXH [RS] X’86’ R1 R3 B2 D2

BXLE [RS] X’87’ R1 R3 B2 D2

0 8 12 16 20 31

Description

First, the 32-bit fixed-point number in general-purpose register R1 is added to the 32-bit
fixed-point number in general-purpose register R3. The sum is then turned into a signed
32-bit fixed-point number, but any carry over beyond the highest-order binary position
will be ignored.

The sum is then compared with the 32-bit fixed-point number in a compare register,
with the signs being taken into account. Following the compare operation, the sum is
stored in general-purpose register R1. The compare register is general-purpose register
R3+1 if R3 is an even number; otherwise it is general-purpose register R3.

Next, a branch takes place to the address D2(B2), provided the sum is greater than
(with BXH) or less than or equal to (with BXLE) the contents of the compare register;
otherwise, no branch takes place and processing continues with the next instruction.

The compare operation is performed and the branch address D2(B2) is determined
before general-purpose register R1 is changed.

50 U3119-J-Z125-2-7600

General instructions BXH, BXLE

Condition code

Stays the same.

Program interrupts

None with the instruction itself.
However, if a branch actually does take place, and if the target address is not a
halfword address or cannot be accessed, a corresponding program interrupt (with
weight 5C16 or 4816) will take place at the target address.

Programming notes

If R3 is not an even number, its contents are used both as an increment value for
general-purpose register R1 and as a compare value.

General-purpose register 0 may be used for R1 and R3.

If R1=R3, the increment is doubled. If R1 is additionally an odd number, note that
the compare operation takes place before general-purpose register R1 is changed,
i.e. the doubled contents of R1 are compared with the nondoubled contents of R1
and only then used to replace the nondoubled contents of R1.

The instructions BXH and BXLE are very helpful for programming "for" loops in
which a runtime variable increases (or decreases) from an initial value to a final
value by a constant increment (or decrement). In these cases, the increment (or
decrement) is kept in an even-numbered register R3 and the final value in the
neighboring odd-numbered register R3+1. An arbitrary different register R1 is used
for the initial value and the runtime variable.

If the loop problem can be arranged in such a way that the runtime variable runs
from an initial value >0 to a final value =0 by a constant decrement, it is even
possible to skip one of the general-purpose registers: simply use BXH and enter the
decrement (as a negative increment) in an odd-numbered general-purpose register;
the BXH instruction will then use the same register for decrementation and
comparison purposes.

U3119-J-Z125-2-7600 51

BXH, BXLE General instructions

Examples

Example 1

Consider the first case mentioned above in the "Programming Notes", i.e. a loop with a
runtime variable which increases from an initial value a via the values a+i, a+2i, ... , to
the final value z. This case can be programmed using BXLE as follows:

Name Operation Operands

.
LA 3, a Any register for the runtime variable
LA 8, i Even-numbered register for the increment
LA 9, z Neighboring register for the final value

BODY EQU *
.
. Loop body
.

BXLE 3,8,BODY
.

Note that BODY is also executed for the runtime variable value z itself.

Example 2

Consider the second case mentioned above under "Programming Notes", i.e. a runtime
variable which decreases from an initial value a to a final value 0 via the values a-i, a-2i,
etc. Using BXH, this might look as follows:

Name Operation Operands

.
LA 3, a Any register for the runtime variable
LH 9,=H’- i ’ Odd-numbered register for the decrement

* and compare values
BODY EQU *

.

. Loop body

.
BXH 3,9,BODY
.

Compare the operand field of BXH in this example with that of BXLE in the preceding
example.
With the final execution of BXH, -i is compared with -i. Therefore no branch takes place,
whereas with the non-last executions of BXH the value 0 is compared with -i and hence
a return occurs. With both BXH and BXLE, the comparison with the final value takes
the sign into account, so that the desired result is obtained by comparing a positive
runtime variable with a negative final value. (We do not strongly recommend this "trick",
but it is legal.)

52 U3119-J-Z125-2-7600

General instructions C, CR

Compare

Function

The instructions CR and C perform a signed comparison of two 32-bit fixed-point
numbers.
The condition code is set in accordance with the comparison result.

Assembler formats

Name Operation Operands Remarks

CR R1,R2
C R1,D2(X2,B2) D2(X2,B2): word boundary

Machine formats

CR [RR] X’19’ R1 R2

C [RX] X’59’ R1 X2 B2 D2

0 8 12 16 20 31

Description

The CR instruction compares the contents of general-purpose register R2 with the
contents of general-purpose register R1; the C instruction compares the word
addressed in main memory with D2(X2,B2) with the contents of general-purpose
register R1. Both operands are treated as 32-bit signed binary numbers (fixed-point
numbers).

The contents of general-purpose register R1 are left unchanged.

Condition code

0~Equal operand1 = operand2
1~Low operand1 < operand2
2~High operand1 > operand2
3 Not used.

U3119-J-Z125-2-7600 53

C, CR General instructions

Program interrupts

Type Weight Causes

Address trans. error X’48’ C: Read access of operand 2 illegal.
Addressing error X’5C’ C: D2(X2,B2) not a word boundary.

Example

Name Operation Operands

.
L 5,=F’-1’
C 5,=F’+1’ sets condition 1~Low
.

If used instead of instruction C, the CL instruction would set the condition code
2~High.

54 U3119-J-Z125-2-7600

General instructions CH

Compare Halfword

Function

The CH instruction performs signed comparison of a 32-bit fixed-point number with a
16-bit fixed-point number.
The condition code is set in accordance with the comparison result.

Assembler formats

Name Operation Operands Remarks

CH R1,D2(X2,B2) D2(X2,B2): halfword boundary

Machine format

CH [RX] X’49’ R1 X2 B2 D2

0 8 12 16 20 31

Description

The contents of general-purpose register R1 are compared with the halfword addressed
in main memory with D2(X2,B2). The register operand is treated as a 32-bit fixed-point
number, the halfword operand as a 16-bit fixed-point number.

Condition code

0~Equal operand1 = operand2
1~Low operand1 < operand2
2~High operand1 > operand2
3 Not used.

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read access of operand2 illegal.
Addressing error X’5C’ D2(X2,B2) not a halfword boundary.

U3119-J-Z125-2-7600 55

CH General instructions

Example

Name Operation Operands

.
L 5,=F’-1’
CH 5,=H’-1’ sets condition code 0~Equal
.

In the example, a binary number consisting of 32 ones is compared with a binary
number consisting of 16 ones. The comparison yields "equal" because the second
operand is treated as though it were padded to the left 16 ones.

56 U3119-J-Z125-2-7600

General instructions CL, CLR

Compare Logical

Function

The instructions CLR and CL perform unsigned comparison of two 32-bit binary
numbers.
The condition code is set in accordance with the comparison result.

Assembler formats

Name Operation Operands Remarks

CLR R1,R2
CL R1,D2(X2,B2) D2(X2,B2): word boundary

Machine formats

CLR [RR] X’15’ R1 R2

CL [RX] X’55’ R1 X2 B2 D2

0 8 12 16 20 31

Description

The CLR instruction causes an unsigned (logical) comparison between the contents of
general-purpose register R2 and the contents of general-purpose register R1; the CL
instruction causes an unsigned comparison between the word addressed in main
memory with D2(X2,B2) and the contents of general-purpose register R1. Both
operands are treated as 32-bit unsigned binary numbers.

The contents of general-purpose register R1 remain unchanged.

Condition code

0~Equal operand1 = operand2
1~Low operand1 < operand2
2~High operand1 > operand2
3 Not used.

U3119-J-Z125-2-7600 57

CL, CLR General instructions

Program interrupts

Type Weight Causes

Address trans. error X’48’ CL: Read access of operand2 illegal.
Addressing error X’5C’ CL: D2(X2,B2) not a halfword boundary.

Example

Name Operation Operands

.
L 5,=F’-1’
CL 5,=F’+1’ sets condition code 2~High
.

If used instead of instruction CL, the C instruction would set the condition code 1~Low.

58 U3119-J-Z125-2-7600

General instructions CLC

Compare Logical Characters

Function

The CLC instruction performs an unsigned (logical) comparison between two character
fields.
The condition code is set in accordance with the comparison result.

Assembler formats

Name Operation Operands Remarks

CLC D1(L,B1),D2(B2) 1 L 256

Machine format

CLC [SS] X’D5’ L-1 B1 D1 B2 D2

0 8 16 20 32 36 47

Description

The character field addressed in main memory by D1(B1), with a length of L bytes, is
compared logically from left to right with the character field of the same length
addressed by D2(B2). The instruction is terminated if the operands are not equal or
when they have been completely processed.

Condition code

0~Equal operand1 = operand2
1~Low operand1 < operand2
2~High operand1 > operand2
3 Not used.

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read access of operand1 or operand2
illegal.

U3119-J-Z125-2-7600 59

CLC General instructions

Programming notes

With the CLC instruction, it is possible to compare operands with a field length of
up to 256 bytes. The CLCL instruction has been provided for fields which are more
than 256 bytes long.

The character fields to be compared may overlap in any way you wish. This feature
can be used, for example, to check whether a character field contains recurring
character subfields (see Example 3).

Examples

Name Operation Operands

.
FIELD1 DC C’AC’
FIELD2 DC C’AB’
FIELD3 DC C’*********’

.

.

.
Example1 CLC FIELD1(1),FIELD2 sets condition code 0~Equal

.

.
Example2 CLC FIELD1,FIELD2 sets condition code 2~High

.

.
Example3 CLC FIELD3+1(L’FIELD3-1),FIELD3
*
* FIELD3 is tested to see if it
* consists of identical chars.
* Sets condition code 0~Equal

.

60 U3119-J-Z125-2-7600

General instructions CLCL

Compare Logical Long

Function

The CLCL instruction performs unsigned (logical) comparison of a main memory area
with another main memory area, from left to right. Both areas may be up to 224 bytes
long, i.e. 16 MB.
The condition code is set in accordance with the comparison result.

Assembler format

Name Operation Operands Remarks

CLCL R1,R2 R1 and R2 even-numbered

Machine format

CLCL [RR] X’0F’ R1 R2

0 8 12 15

Description

R1 and R2 each determine a pair of registers, consisting of general-purpose registers
R1 and R1+1, or R2 and R2+1. R1 and R2 must be even-numbered; otherwise, a
program interrupt will occur due to an addressing error.

Operand1 and operand2 are determined respectively by the register pairs R1 and R1+1
or R2 and R2+1. Their start addresses are taken from the first register R1 or R2, their
lengths (in bytes) from the second register R1+1 or R2+1. Register R2+1 also contains
the coding of the slack byte.

U3119-J-Z125-2-7600 61

CLCL General instructions

The representation of the address in R1 or R2 depends on the addressing mode used.
The following assignments apply:

24-bit addressing mode 31-bit addressing mode

0 8 31 0 1 8 31

R1 //////// A(operand1) / A(operand1)

R1+1 //////// length operand1 //////// length operand1

R2 //////// A(operand2) / A(operand2)

R2+1 slack byte length operand2 slack byte length operand2

"/" means: "is ignored".

The comparison takes place logically (unsigned) from left to right. It terminates when
either nonidentical is determined or the end of the longer operand is reached. If the
operands are of different lengths, the shorter operand is treated as though it were
padded to the right with slack bytes to the length of the longer operand. The coding of
this slack byte is taken from the highest-order byte of R2+1.

The CLCL instruction can be interrupted on the hardware side. If it is interrupted, the
progress of the comparison up to that point is retained in the register pairs R1 and R2
(by storing the incremented addresses and the decremented lengths). Following the
interrupt, the comparison is then resumed at the position in main memory where the
interrupt occurred.

Once the instruction has been executed, the register pairs R1 and R1+1, or R2 and
R2+1, have the following values:

If the operands are identical, registers R1 and R2 contain the address of the first
operand and the second operand respectively, increased by the length fields in
R1+1 or R2+1. The length fields in R1+1 and R2+1 receive the value 0.

If the operands are not identical, and their nonidentity did not occur in the area of
the slack bytes, R1 and R2 contain the address of the first nonidentical byte in the
first operand and the second operand, respectively. The length fields in R1+1 or
R2+1 are reduced by the number of identical bytes.

62 U3119-J-Z125-2-7600

General instructions CLCL

If the operands are not identical but their nonidentity was only determined in the
area of the slack bytes, then the first register of the longer operand is increased by
the number of "identical" bytes, and the first register of the shorter operand by the
length of that operand; in each of the two second registers, the length field of the
longer operand is reduced accordingly by the number of "identical" bytes, and that
of the shorter operand is set to 0.

In all three cases, once the instruction has been executed the highest-order bytes of
R1+1 and R2+1 remain unchanged and the uppermost 8 bits or the uppermost bit
(depending on the address mode used) of R1 and R2 is set to 0.

Condition code

0~Equal operand1 = operand2 or L’operand1=0 and L’operand2=0
1~Low operand1 < operand2
2~High operand1 > operand2
3 Not used.

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read access of operand1 and operand2
illegal.

Addressing error X’5C’ R1 or R2 not even-numbered.

Programming notes

If both operands have the length 0, they are considered identical.

The two operands may overlap in any way you wish.

The application program should ensure on its own that all of the address spaces of
both operands lie exclusively in its own address space. This is because the CLCL
instruction does not check whether the address spaces are within the permissible
limits at the start of execution but only during execution. If an illegal subspace is
detected, the instruction does not necessarily abort; instead, it may resume
execution following the subspace. In any case, however, the results both in main
memory and in the condition code are unusable.

The user should not activate the CLCL instruction with the EX instruction if this EX
uses the same registers as the CLCL.

U3119-J-Z125-2-7600 63

CLCL General instructions

Example

The examples below compare a maximum of 20000 bytes of the main memory areas
C1 and C2. Since C2 has a length of 15000 bytes, the last 5000 bytes of C1 are
compared with the slack byte, provided the first 15000 bytes are identical.

Name Operation Operands

.
LM 4,5,=A(C1,20000) Registers 4 and 5: operand1
LM 10,11,=A(C2,15000) Registers 10 and 11: operand2
ICM 11,B’1000’,=C’ ’ Slack byte to byte 0 from reg 11
CLCL 4,10
.

After execution of the CLCL instruction, the following values may occur:

If identity occurs, registers 4 and 10 contain the values A(C1+20000) and
A(C2+15000), and the length fields of registers 5 and 11 contain the value 0.

If nonidentity occurs within the first 15000 bytes, registers 4 and 10 point to the first
nonidentical byte in C1 or C2, and the length fields of registers 5 and 11 are
reduced by the number of identical bytes.

If nonidentity occurs in the area of the last 5000 bytes, register 4 contains the
address of the first nonidentical byte, and the length field of register 5 is reduced by
the number of identical bytes. Register 10, however, contains the value
A(C2+15000) and the length field of register 11 contains the value 0.

In all cases, the uppermost byte of registers 5 and 11 remains unchanged, i.e. in the
above example, =X’00’ or =C’_’.

64 U3119-J-Z125-2-7600

General instructions CLI

Compare Logical Immediate

Function

The CLI instruction compares one byte of main memory with the direct operand I2.
The condition code is set in accordance with the comparison result.

Assembler format

Name Operation Operands Remarks

CLI D1(B1),I2 X’00’ I2 X’FF’

Machine format

CLI [SI] X’95’ I2 B1 D1

0 8 16 20 31

Description

The byte addressed in main memory by D1(B1) is compared logically (unsigned) with
the direct operand I2.

Condition code

0~Equal operand1 = I2
1~Low operand1 < I2
2~High operand1 > I2
3 Not used.

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read access of operand1 illegal.

U3119-J-Z125-2-7600 65

CLI General instructions

Example

Name Operation Operands

.
FIELD1 DC C’AC’

.

.

.
CLI FIELD1,C’A’ sets condition code 0~Equal
.

66 U3119-J-Z125-2-7600

General instructions CLM

Compare Logical under Mask

Function

The CLM instruction performs unsigned (logical) comparison of selected bytes in a
general-purpose register with a character field in main memory.
The condition code is set in accordance with the comparison result.

Assembler format

Name Operation Operands Remarks

CLM R1,M3,D2(B2) B’0000’ M3 B’1111’

Machine format

CLM [RS] X’BD’ R1 M3 B2 D2

0 8 12 16 20 31

Description

The 4 bits of the "mask" M3 correspond one-to-one to the 4 bytes of general-purpose
register R1 (from left to right, both in the mask and in the register). Those bytes in R1
which correspond to ones in the mask are treated as a contiguous field; this field is
compared logically (unsigned) with the character field in main memory by D2(B2).

Condition code

0~Zero The selected bytes of R1 are identical to the character field, or the mask
is =016.

1~Minus The selected bytes of R1 are less than the character field.
2~Plus The selected byes of R1 are greater than the character field.
3 Not used.

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read access to operand2 illegal,
even if M3 = 0 16.

U3119-J-Z125-2-7600 67

CLM General instructions

Programming notes

The length (in bytes) of the main memory field is equal to the number of ones in the
mask.

When a mask consisting entirely of ones is used (B’1111’), the CLM instruction has
the same effect as the CL instruction, except that the main memory field need not
be aligned on a word boundary.

Example

Name Operation Operands

.
CLM 3,B’1001’,=C’LR’
.

The instruction in the example performs a logical comparison of the highest-order and
the lowest-order bytes of general-purpose register 3 with the character string LR.

68 U3119-J-Z125-2-7600

General instructions CS, CDS

Compare and Swap

Function

The instructions CS and CDS store the contents of a general-purpose register in a main
memory area, provided the contents of this main memory area are identical to the
contents of another general-purpose register. The instructions preserve the integrity of
their data during execution of the instruction.
The condition code is set.

Assembler formats

Name Operation Operands Remarks

CS R1,R3,D2(B2) D2(B2): word boundary
CDS R1,R3,D2(B2) R1, R3 even-numbered and

* D2(B2): doubleword boundary

Machine formats

CS [RS] X’BA’ R1 R3 B2 D2 (short operands)

CDS [RS] X’BB’ R1 R3 B2 D2 (long operands)

0 8 12 16 20 31

Description

The first operand (R1) is compared logically (unsigned) with the second operand
(D2(B2)). If they are identical, the third operand (R3) replaces the second operand and
the condition code is set to 0~Equal; if they are not identical, the second operand
replaces the first operand and the condition code is set to 1~Not Equal. The second
operand is write-locked until the instruction execution has finished.

With CS, all three operands are 32 bits long; with CDS, they are 64 bits long.

Instr. Operand1 Operand2 Operand3

CS Register R1 Word at D2(B2) Register R3
CDS Register pair R1,R1+1 Double word at D2(B2) Register pair
* R3, R3+1

U3119-J-Z125-2-7600 69

CS, CDS General instructions

Condition code

0~Equal Operand2 was identical to operand1; operand2 is replaced by operand3.
1~Not Equal Operand2 was not identical to operand1; operand1 is replaced by

Operand2.
2 Not used.
3 Not used.

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read/write access of operand2 illegal.
Addressing error X’5C’ CS: D2(B2) not a word boundary.

CDS: D2(B2) not a double word boundary
or R1 or R3 not even-numbered.

Programming notes

The instructions CS and CDS (as well as TS) are the only instructions in the
instruction set that read- and write-lock the main memory data which they address
while they are being executed. During this period this data cannot be read or written
by any other programs, either on the same central processing unit or on different
ones. These instructions also prevent access to subsequent instructions and/or their
operands while they are being executed. The instructions thereby ensure that the
data status at the time of their (initial) read operation is identical to the data status
at the time of their (final) write operation. For this purpose, a so-called "serialization"
takes place in the hardware before and after the CS or CDS instruction, during
which all outstanding memory access operations are processed. This mechanism
predestines CS and CDS instructions for synchronization problems in multiprocessor
applications.

In applications of this sort, each of the concurrently running programs must take
into account that while they are processing and modifying a common memory area
another program may be doing the same thing, thereby causing the processing
results to cancel each other out.

70 U3119-J-Z125-2-7600

General instructions CS, CDS

Consider the simple case where two concurrently running programs A and B
increment a common word in main memory, called counter, by one. If both
programs accidentally perform this incrementation at the same time, but program B
is running one instruction behind program A, they may produce the following effect:

Time Counter Program A Program B

t 0 assume 100 Reads counter (100)
t 1 100 Increments counter (101) Reads counter (100)
t 2 101 Stores counter (101) Increments counter (101)
t 3 101 Stores counter (101)

Although both programs have performed incrementation, counter only contains the
value 101 at the end since program A had not finished storing it when program B
began.

On the pages that follow we will show you an instruction sequence that forms a
safe method against this effect. The idea is to use the CS (or CDS) instruction for
storing the modified value instead of the ST instruction. Namely, the CS instruction
determines, prior to time t3 of program B, that the current contents of counter are
no longer identical to its contents at time t1, since program A has modified these
contents in the meantime, namely at time t2. In this case, program B does not
perform storage, but repeats incrementation, correctly proceeding from the value
101.

Even if a shareable main memory area is longer than 4 (or 8) bytes, the instructions
CS and CDS may still be used. This is usually done by setting up a full word or
doubleword which stands for this storage area and in which the possible "statuses"
of the storage are contained. CS or CDS then only manages this status word rather
than the actual storage area.

The instructions CS and CDS should only be used for coordinating programs (in the
same or in different central processing units), and not to replace an instruction
sequence of CL and ST instructions: namely CS and CDS are time-consuming and
block instruction execution in other central processing units.

U3119-J-Z125-2-7600 71

CS, CDS General instructions

Example

One safe method of updating a shared main memory word (SHAREWD) by means of
CS is the instruction sequence shown below:

Name Operation Operands

.
UPDATE L R1,SHAREWD
AGAIN LR R3,R1

.

< compute update value in R3, R1 must remain unchanged >

.
CS R1,R3,SHAREWD
BNE AGAIN
.

The instruction sequence begins by loading the initial value of SHAREWD into the
general-purpose register R1; here it must remain unchanged until the CS instruction is
issued. The update value of SHAREWD is produced in another register (R3). The final
storage operation takes place via the CS instruction, which first checks whether the
current value of SHAREWD is (still) identical to its initial value (in R1). Only if this is the
case does CS actually perform the storage; it also sets the condition code to 0~Equal,
thereby exiting the instruction sequence. If, however, at the time CS is executed the
value of SHAREWD is not (no longer) identical to the contents of R1, no storage takes
place; instead, the contents of the now modified main memory word are loaded into
register R1, the condition code is set to 1~Not Equal and the program section is
repeated.

72 U3119-J-Z125-2-7600

General instructions CVB

Convert to Binary

Function

The CVB instruction converts a packed decimal number into a 32-bit fixed-point
number.
The condition code is left unchanged.

Assembler format

Name Operation Operands Remarks

CVB R1,D2(X2,B2) D2(X2,B2): doubleword boundary

Machine format

CVB [RX] X’4F’ R1 X2 B2 D2

0 8 12 16 20 31

Description

D2(X2,B2) must address a packed decimal number which is exactly 8 bytes in length
and is located in a doubleword in main memory. This number is converted into a 32-bit
signed fixed-point number and stored in general-purpose register R1.

The decimal number to be converted must lie in the range -231 ... +231-1, i.e. it must be
at least -2147483648 and may be as large as +2147483647. If this condition is not
satisfied, conversion is performed anyway, but general-purpose register R1 will only
contain the lowest-order 32 bits of the fixed-point number following instruction
execution, and a program interrupt will also occur due to a division error.

The decimal number to be converted is checked for a correct, packed format. In case
of error, a program interrupt occurs due to a data error.

Condition code

Stays the same.

U3119-J-Z125-2-7600 73

CVB General instructions

Program interrupts

Type Weight Causes

Address. trans. error X’48’ Read access of operand2 illegal.
Addressing error X’5C’ D2(X2,B2) not a doubleword boundary.
Division error X’68’ The decimal number to be converted

is >+2147483647 or <-2147483648.
Data error X’60’ The number to be converted is not a

correctly packed, 8-byte decimal number.

Programming notes

If the decimal number is negative, the fixed-point number is represented by its twos
complement.

Examples

The examples below produce the following results in general-purpose register 3:

FIELD (on double- Sample instruction Register 3 after
word boundary)

PL8’255’ CVB 3,FIELD F’255’ = X’000000FF’

PL8’-255’ CVB 3,FIELD F’-255’ = X’FFFFFF01’

PL8’+2147483647’ CVB 3,FIELD F’2147483647’ = X’7FFFFFFF’

PL8’-2147483649’ CVB 3,FIELD F’2147483647’ = X’7FFFFFFF’

In all examples it is assumed that the main memory operand FIELD is aligned on a
doubleword boundary.

In the last example, a program interrupt occurs due to a division error, since the
decimal number to be converted is too small (by one). Register 1 contains the lowest-
order 32 bits of the correct fixed-point number. In this case these bits are identical to
the fixed-point number from the largest possible decimal number.

74 U3119-J-Z125-2-7600

General instructions CVD

Convert to Decimal

Function

The CVD instruction converts a 32-bit fixed-point number to a packed 8-byte decimal
number.
The condition code is left unchanged.

Assembler format

Name Operation Operands Remarks

CVD R1,D2(X2,B2) D2(X2,B2): doubleword boundary

Machine format

CVD [RX] X’4E’ R1 X2 B2 D2

0 8 12 16 20 31

Description

The fixed-point number (with sign) in general-purpose register R1 is converted to a 15-
digit packed decimal number which is exactly 8 bytes long and is located in main
memory (at a doubleword addressed by D2(X2,B2). General-purpose register R1 is left
unchanged.

Condition code

Stays the same.

Program interrupts

Type Weight Causes

Address trans. error X’48’ Write access to operand2 illegal.
Addressing error X’5C’ D2(X2,B2) not a doubleword boundary.

U3119-J-Z125-2-7600 75

CVD General instructions

Programming notes

Any 32-bit signed fixed-point number can be converted.

If the decimal number is positive, its sign is set to = C16; otherwise it is = D16.

Examples

The examples below produce the following results in FIELD (which must be aligned on
a doubleword boundary):

Register 3 Sample instruction FIELD (on doubleword boundary)

F’255’ CVD 3,FIELD PL8’255’

F’-255’ CVD 3,FIELD PL8’-255’

X’FFFFFFFF’ CVD 3,FIELD PL8’-1’

X’80000000’ CVD 3,FIELD PL8’-2147483648’

76 U3119-J-Z125-2-7600

General instructions D, DR

Divide

Function

The instructions DR and D perform signed division of a 64-bit fixed-point number by a
32-bit fixed-point number. The remainder and the quotient replace the dividend.
The condition code is left unchanged.

Assembler formats

Name Operation Operands Remarks

DR R1,R2 R1 even-numbered
D R1,D2(X2,B2) R1 even-numbered and

* D2(X2,B2): word boundary

Machine format

DR [RR] X’1D’ R1 R2

D [RX] X’5D’ R1 X2 B2 D2

0 8 12 16 20 31

Description

The R1 field of instruction DR and D defines a pair of general-purpose registers
consisting of the registers R1 and R1+1. R1 must be even-numbered, otherwise a
program interrupt will occur due to an addressing error.

The dividend is taken from general-purpose registers R1 and R1+1. With the DR
instruction, the divisor is taken from general-purpose register R2; with D it is taken from
the main memory word addressed by D2(X2,B2). The remainder is stored in the (even-
numbered) register R1, the quotient in the (odd-numbered) register R1+1; they
overwrite the dividend.

The dividend is treated as a 64-bit fixed-point number with a sign at bit position 0 of
R1; the divisor, remainder and quotient are treated as 32-bit signed fixed-point
numbers.

The sign of the quotient is computed according to the usual algebraic rules; the
remainder always has the same sign as the dividend.

If the quotient is too large to be included in register R1 or the divisor is =0, a program
interrupt occurs due to a division error (even if the dividend is =0).

U3119-J-Z125-2-7600 77

D, DR General instructions

Condition code

Stays the same.

Program interrupts

Type Weight Causes

Address trans. error X’48’ D : Read access of operand2 illegal.
Addressing error X’5C’ DR, D : R1 not even-numbered.

D : D2(X2,B2) not a word boundary.
Division error X’68’ Divisor =0 or quotient too large.

Programming notes

If R1=R2, this always causes a program interrupt due to a division error.

The maximum values for the dividend are +262+231-1 and -262+1, not +263-1 and
and -263 (see examples).

Note that once the instruction has been executed, the remainder is stored before
the quotient (R1: remainder, R1+1: quotient).

Examples

The following values of dividend and divisor produce the values shown below for
quotient and remainder:

Dividend Divisor Remainder Quotient

+500 +17 +7 +29
+500 -17 +7 -29
-500 +17 -7 -29
-500 -17 -7 +29

Limit values:

+262+231-1 2 31-1 +2 31-2 +2 31-1
+262+231-1 -2 31 -2 31 +231-1

-2 62+2 +231-1 -2 31+2 -2 31

-2 62+1 -2 31 -2 31+1 +231-1

78 U3119-J-Z125-2-7600

General instructions EX

Execute

Function

The EX instruction executes another instruction. This instruction may be modified
beforehand.
The condition code is changed only if it is changed by the executed instruction.

Assembler format

Name Operation Operands Remarks

EX R1,D2(X2,B2) D2(X2,B2): halfword boundary

Machine format

EX [RX] X’44’ R1 X2 B2 D2

0 8 12 16 20 31

Description

The EX instruction executes the instruction addressed by D2(X2,B2) (the "target
instruction"). Before this takes place, bit positions 8 to 15 are linked with logical OR to
bit positions 24 to 31 of general-purpose register R1. The OR link does not change the
instruction itself, nor does it change register R1; instead, it only influences the
interpretation of the target instruction.

If R1=0, the target instruction is executed without a preceding OR link.

The target instruction can be 2, 4 or 6 bytes long. It is executed as though it were
located at the memory position of instruction EX, and as though it too were 4 bytes
long. If, for example, the target instruction is BALR, the continuation address of the EX
instruction (and not that of the BALR instruction) is stored as the "instruction
continuation address" and the value (10)2 (rather than (01)2) is stored as ILC.

The target instruction of the EX instruction must not be another EX; otherwise, a
program interrupt will occur due to an addressing error. The address defined by
D2(X2,B2) must be even-numbered; otherwise, a program interrupt due to an
addressing error will likewise occur. If the target instruction is not a correct instruction
of the instruction set, the results of EX will be unpredictable.

Condition code

The condition code is changed as modified by the target instruction.

U3119-J-Z125-2-7600 79

EX General instructions

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read access of target instruction illegal.
Addressing error X’5C’ Target instruction itself an EX, or

D2(X2,B2) not a halfword boundary.

Programming notes

By ORing the second byte of a target instruction, the EC instruction makes it
possible to indirectly determine the length field, index field, mask field, register field
or second operation code byte of this target instruction.

The EX instruction is especially important for programming so-called "read only" (or
"reentrant") programs since it does not change the target instruction (see example).

Caution is advised when the target instruction is interruptable (e.g. the instruction
CLCL or MVCL). In this case, not one of the registers X2 and B2 in the EX
instruction should be used, not even in the target instruction, since their integrity
can no longer be ensured following an EX. Nor should the EX instruction itself be
contained in the receive field of the target instruction in the case of MVCL.

The EX instruction is very time-consuming.

Examples

Example 1

The following instructions turn a variable-length number into a fixed-length number, at
the same time converting it into packed format:

Name Operation Operands

LH 5,SLENGTH SLENGTH: Length of SFIELD number
BCTR 5,0 minus 1
EX 5,PACKINST

.

.

.
PACKINST PACK DFIELD,SFIELD(0) L1=L’DFIELD, L2=0

.

The length of the SFIELD number is taken from the halfword SLENGTH; it is then ORed
by the EX instruction to the L2 field of the PACK instruction. For this reason the L2 field
must be =016. Note that the length used in the PACK reason the L2 field must be =016.

80 U3119-J-Z125-2-7600

General instructions EX

Note that the length used in the PACK instruction must be reduced by 1 from the true
length, as is done here by the BCTR instruction. The assembler itself [1] computes the
length of the DFIELD number from the data declaration of DFIELD and reduces it by 1.

Example 2

The following two instruction sequences AAAA and BBBB have the same effect, namely,
they move a variable number of bytes from SFIELD to DFIELD:

Name Operation Operands

.
AAAA LH 5,SLENGTH SLENGTH: number bytes to be moved

BCTR 5,0 minus 1
EX 5,MOVEINST

.

.
MOVEINST MVC DFIELD(0),SFIELD

.
BBBB LH 5,SLENGTH SLENGTH: number bytes to be moved

BCTR 5,0
STC 5,MOVEINST+1 Enters length reduced by 1

MOVEINST MVC DFIELD(0),SFIELD in L field of an MVC
.

The difference between the two is that the instruction sequence AAAA remains "read
only" while the instruction sequence BBBB does not. The EX instruction executes the
MVC instruction with ORed byte 1, but does not change the instruction itself.
EX is (virtually) indispensable for problems in which the program text must remain
constant, but in which dynamic modifications in the parameters of individual instructions
are required.

U3119-J-Z125-2-7600 81

IC General instructions

Insert Character

Function

The IC instruction moves a byte from memory to the lowest-order byte of a general-
purpose register.
The condition code is left unchanged.

Assembler format

Name Operation Operands Remarks

IC R1,D2(X2,B2)

Machine format

IC [RX] X’43’ R1 X2 B2 D2

0 8 12 16 20 31

Description

The byte addressed in main memory by D2(X2,B2) is moved to byte 3 (i.e. bit positions
24 to 31) of general-purpose register R1. Bit positions 0 to 23 of R1 remain unchanged.

Condition code

Stays the same.

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read access of operand2 illegal.

82 U3119-J-Z125-2-7600

General instructions IC

Example

Name Operation Operands

.
L 5,=XL4’ANNA’
IC 5,=’E’ ’ANNE’ in general-purpose reg. 5

* CC remains unchanged
.

U3119-J-Z125-2-7600 83

ICM General instructions

Insert Characters under Mask

Function

The ICM instruction moves a character field in main memory to selected bytes of a
general-purpose register.
The condition code is changed in accordance with the value of the moved field.

Assembler format

Name Operation Operands Remarks

ICM R1,M3,D2(B2) B’0000’ M3 B’1111’

Machine format

ICM [RS] X’BF’ R1 M3 B2 D2

0 8 12 16 20 31

Description

The 4 bits of the "mask" M3 (direct operand) correspond one-to-one with the 4 bytes of
general-purpose register R1 (from left to right in both the mask and the register). Those
bytes in R1 with corresponding ones in the mask are replaced by consecutive bytes in
the main memory field addressed by D2(B2). The bytes of the general-purpose register
with corresponding zeros in the mask remain unchanged.

If the mask is =016 or if all the bytes used are =0016, the condition code is set to
0~Zero. In all other cases, the highest-order bit of the first byte used determines the
condition code. If this bit is 1, the condition code is set to 1~Minus; otherwise, it is set
to 2~Plus.

Condition code

0~Zero All bytes used are =0016 or the mask is =016.
1~Minus The highest-order bit of the first byte used is =1.
2~Plus The highest-order bit of the first byte used is =0, but at least one further

bit is =1.
3 Not used.

84 U3119-J-Z125-2-7600

General instructions ICM

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read access of operand2 illegal,
even if M3 = 0 16.

Programming notes

The length in bytes of the main memory field is identical to the number of ones in
the mask.

When a mask consisting entirely of ones is used (B’1111’) the following differences
to the L instruction apply:

The main memory field does not have to be aligned on a word boundary.
The condition code is set.
The L instruction is in RX format, the ICM instruction in RS format.
The L instruction is quicker.

Examples

The examples below produce the following results:

Name Operation Operands

.
Example1 ICM 5,B’1111’,FBLENGTH

.

.
FBLENGTH DC C’ ’

DC FL3’20000’
.
.

Example2 ICM 5,B’0001’,=X’00’
.

In example 1, 4 bytes are entered in general-purpose register 5: namely, a blank in byte
0 and the number 20000, binary, in bytes 1 to 3. Since the blank is coded as X’40’, i.e.
the first bit entered is 0, the condition is set to 2~Plus.

In example 2, the lowest-order byte in general-purpose register 5 is replaced by a byte
from main memory. Unlike the IC instruction, however, in this case the condition code
is set, namely, 0~Zero.

U3119-J-Z125-2-7600 85

IPM General instructions

Insert Program Mask

Function

The IPM instruction moves the current values of the condition code and program mask
to a general-purpose register.
The condition code is left unchanged.

Assembler format

Name Operation Operands Remarks

IPM R1

Machine format

IPM [RRE] X’B222’ //////// R1 ////

0 16 24 28 31

Description

The current value of the condition code (010, 110, 210 or 310) is moved in binary form to
bit positions 2 and 3, and the current value of the (4-bit) program mask is moved to bit
positions 4 to 7 of general-purpose register R1. Bit positions 0 and 1 of register R1 are
set to 0; bit positions 8 to 31 of register R1 remain unchanged.

Bit positions 16 to 23 and 28 to 31 of the instruction are ignored.

Condition code

Stays the same.

Program interrupts

None.

86 U3119-J-Z125-2-7600

General instructions IPM

Programming notes

The IPM instruction "compensates" for the fact that, in 31-bit addressing mode, it is
impossible to read the condition code and the program mask with the BALR or BAL
instruction. This continues to be possible in 24-bit addressing mode, but here too
the use of the IPM instruction is the better solution.

The IPM instruction does not supply the Instruction Length Code (ILC) which is
provided by the BALR and BAL instructions (though only in 24-bit addressing
mode). When using 31-bit addressing mode one must make do without the ILC
(assuming it is ever needed at all).

The bits in the program mask have the following meaning:

Bit in program mask Bit position in R1 Meaning

0 4 Fixed-point overflow
1 5 Decimal overflow
2 6 Exponent underflow
3 7 Significance (mantissa = 0)

BS2000 presets all 4 bits of the program mask to 1, so that a program interrupt will
take place when the corresponding event occurs. The SPM instruction, however,
makes it possible for an application program to change this presetting.

Example

Name Operation Operands

.
ICM 15,B’1000’,=X’3C’
SPM 15 CC: 3~Overflow
SLR 11,11 CC: 2~Plus
IPM 11
.

The instruction sets the condition code to 3 and the program mask to C16. (This
suppresses subsequent program interrupts due to exponent underflow and significance,
but permits those due to fixed-point and decimal overflow). The instruction SLR 11,11
leaves the program mask unchanged, but sets the condition code to 2. This value is
read by the IPM instruction, so that in the end the highest-order byte of register 11
contains the value X’2C’ (not X’3C’).

U3119-J-Z125-2-7600 87

L, LR General instructions

Load

Function

The instructions LR and L move a 32-bit binary number from a general-purpose register
or from a word in main memory to a general-purpose register.
The condition code is left unchanged.

Assembler formats

Name Operation Operands Remarks

LR R1,R2
L R1,D2(X2,B2) D2(X2,B2): word boundary

Machine formats

LR [RR] X’18’ R1 R2

L [RX] X’58’ R1 X2 B2 D2

0 8 12 16 20 31

Description

The word in main memory (L) addressed by D2(X2,B2), or the contents of general-
purpose register R2 (LR), are moved to general-purpose register R1.

Instr. Operand1 Operand2

LR Register R1 Register R2
L Register R1 Word addressed by D2(X2,B2)

Condition code

Stays the same.

88 U3119-J-Z125-2-7600

General instructions L, LR

Program interrupts

Type Weight Causes

Address trans. error X’48’ L: Read access of operand2 illegal.
Addressing error X’5C’ L: D2(X2,B2) not a word boundary.

U3119-J-Z125-2-7600 89

LA General instructions

Load Address

Function

The LA instruction loads an address into a general-purpose register.
The condition code is left unchanged.

Assembler format

Name Operation Operands Remarks

LA R1,D2(X2,B2)

Machine format

LA [RX] X’41’ R1 X2 B2 D2

0 8 12 16 20 31

Description

The address D2(X2,B2) is loaded into general-purpose register R1. The address is
computed logically as the sum of the addresses in general-purpose registers X2 and B2
and the binary value of the 12-bit D2 field; any signs and any carry over beyond the
highest-order binary position are ignored. If X2=0, the contents of register X2 are not
added; if B2=0, the contents of register B2 are not added.

In 24-bit addressing mode, only the lowest-order 24 bits of the contents of general-
purpose registers B2 and X2 are used to form the sum; the sum is entered in bit
positions 8 to 31 of general-purpose register R1, and bit positions 0 to 7 of R1 are set
to 0.
In 31-bit addressing mode, only the lowest-order 31 bits of B2 and X2 are used to form
the sum; the sum is entered in bit positions 1 to 31 of general-purpose register R1, and
bit 0 is set to 0.

No memory access takes place to the resulting address.

Condition code

Stays the same.

Program interrupts

None.

90 U3119-J-Z125-2-7600

General instructions LA

Programming notes

The LA instruction is often critical for importing programs from 24-bit addressing
mode to 31-bit addressing mode. In older programs, namely, the highest-order 8
bits to the left of a 24-bit address are not infrequently used up with additional
information (e.g. condition codes), and the LA instruction is then employed for the
purpose of setting the highest-order 8 bits to 0. Before moving programs from a 24-
bit environment to a 31-bit environment, we particularly recommend tracing all the
addresses proceeding from LA instructions.

The LA instruction can be used to increment a general-purpose register by a
constant value. This is done by entering this constant in the instruction as a D2
value and setting R1=B2 and X2=0, i.e. by writing, for example, LA 5,6(5) in order
to increment register 5 by 6. However, note that the result of the LA instruction is
not a fixed-point number but rather an address that has a different length in 24-bit
addressing mode than in 31-bit addressing mode. This difference is immaterial only
as the result is less than 16 MB.

Example

The instructions below illustrate the "dangers" of the LA instruction:

Name Operation Operands

.
A CSECT
A AMODE 31

.

.
LA 5,A
L 15,=V(B)
BASSM 14,15

* .
B CSECT
B AMODE 24

.
LA 5,1(5)
BSM 0,14
.

In program section A a 31-bit address is created in register 5, and in program section
B this address is incremented by 1 using an LA instruction. Since B is running in 24-bit
addressing mode, the address created and returned to A is only 24 bits long. The
problem here is that A will run correctly in the address space when less than 16 MB,
but incorrectly when greater than 16 MB.

U3119-J-Z125-2-7600 91

LCR General instructions

Load Complement

Function

The LCR instruction moves the twos complement of a 32-bit fixed-point number from a
general-purpose register to a general-purpose register.
The condition code is set in accordance with the resulting fixed-point number.

Assembler format

Name Operation Operands Remarks

LCR R1,R2

Machine format

LCR [RR] X’13’ R1 R2

0 8 12 15

Description

The twos complement of the fixed-point number in general-purpose register R2 is
moved to general-purpose register R1.

Fixed-point overflow occurs when the least negative number (-231) is to be
complemented; the result in R1 is then once again the least negative number, and the
condition code is set to 3~Overflow; moreover, a program interrupt takes place if the
bit for fixed-point overflow in the program mask is 1 (default value in BS2000).

Condition code

0~Zero result = 0
1~Minus result < 0
2~Plus result > 0
3~Overflow fixed-point overflow

Program interrupts

Type Weight Causes

Fixed-point overflow X’78’ R2 contents =-2 31

92 U3119-J-Z125-2-7600

General instructions LCR

Programming notes

R1 may be equal to R2.

When the contents of R2 =0, the contents of R1 (and the condition code) are set to
=0.

Examples

Name Operation Operands

.
Example1 L 0,=F’-1’ Register 0: -1

LCR 0,0 now: +1, CC: 2
LCR 0,0 now: -1, CC: 1
.
.

Example2 L 5,=F’-2147483648’ Register 5 : -2 31

LCR 6,5 Register 6 : -2 31

.

U3119-J-Z125-2-7600 93

LH General instructions

Load Halfword

Function

The LH instruction moves a halfword from main memory to bytes 2 and 3 of a general-
purpose register and fills bytes 0 and 1 with the sign bit of the halfword.
The condition code is left unchanged.

Assembler format

Name Operation Operands Remarks

LH R1,D2(X2,B2) D2(X2,B2): halfword boundary

Machine format

LH [RX] X’48’ R1 X2 B2 D2

0 8 12 16 20 31

Description

The halfword addressed by D2(X2,B2) is moved to bit positions 16 to 31 of general-
purpose register R1. Bit positions 0 to 15 are set to the value of the highest-order bit of
the halfword.

Condition code

Stays the same.

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read access of operand2 illegal.
Addressing error X’5C’ D2(X2,B2) not a halfword boundary.

94 U3119-J-Z125-2-7600

General instructions LH

Example

Name Operation Operands

.
LH 0,=H’-1’
CLM 0,B’1100’,=X’FFFF’ yields CC 0~Equal
.

U3119-J-Z125-2-7600 95

LM General instructions

Load Multiple

Function

The LM instruction loads up to 16 consecutive words from main memory into
consecutive general-purpose registers.
The condition code is left unchanged.

Assembler format

Name Operation Operands Remarks

LM R1,R3,D2(B2) D2(B2): word boundary

Machine format

LM [RS] X’98’ R1 R3 B2 D2

0 8 12 16 20 31

Description

The consecutive general-purpose registers, beginning with R1 and ending with R3, are
loaded with consecutive words, of which the first is addressed with D2(B2).

If R3 is less than R1, loading takes place in ascending order from R1 to general-
purpose register 15, and from general-purpose register 0 up to and including R3. If
R1=R3, only one register (R1) is loaded.

Instr. Operand1 Operand2

LM Contents of registers R1 to R3 Word sequence addressed by
D2(B2)
No of words =R3-R1+1 if R3 R1

=R3-R1+17 if R3<R1

Condition code

Stays the same.

96 U3119-J-Z125-2-7600

General instructions LM

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read access of operand2 illegal.
Addressing error X’5C’ D2(B2) not a word boundary.

Example

Name Operation Operands

.
LM 14,1,=A(ONE,TWO,THREE,FOUR)

* General-purpose registers 14, 15, 0 and 1
* are loaded with 4 consecutive words
* (in this case addresses).

.

U3119-J-Z125-2-7600 97

LNR General instructions

Load Negative

Function

The LNR instruction moves the negative value of a 32-bit fixed-point number from a
general-purpose register to a general-purpose register.
The condition code is set in accordance with the moved fixed-point number.

Assembler format

Name Operation Operands Remarks

LNR R1,R2

Machine format

LNR [RR] X’11’ R1 R2

0 8 12 15

Description

If the fixed-point number in general-purpose register R2 is positive, i.e. its bit position 0
=0, then its twos complement is moved to general-purpose register R1; otherwise, it is
moved in its original form.

If the fixed-point number to be moved is =0, the moved number is also set to =0.

Condition code

0~Zero result = 0 (R2 is likewise = 0)
1~Minus result < 0
2 Not used.
3 Not used.

Program interrupts

None.

Programming notes

R1 may be equal to R2.

98 U3119-J-Z125-2-7600

General instructions LNR

Examples

Name Operation Operands

.
Example1 L 0,=F’1’ Register 0 before: +1

LNR 0,0 Register 0 after: -1
* CC: 1~Minus

.

.
Example2 SLR 5,5 Register 5 : 0

LNR 6,5 Register 6 : 0
* CC: 0~Zero

.

U3119-J-Z125-2-7600 99

LPR General instructions

Load Positive

Function

The LPR instruction moves the amount of a 32-bit fixed-point number from a general-
purpose register to a general-purpose register.
The condition code is set in accordance with the value of the moved fixed-point
number.

Assembler format

Name Operation Operands Remarks

LPR R1,R2

Machine format

LPR [RR] X’10’ R1 R2

0 8 12 15

Description

If the fixed-point number in general-purpose register R2 is negative, i.e. its bit position 0
has the value =1, then its twos complement is moved to general-purpose register R1;
otherwise, it is moved in its original form.

Fixed-point overflow occurs when the least negative number (-231) is to be
complemented; the result in R1 is then once again the least negative number, and the
condition code is set to 3~Overflow; moreover, a program interrupt takes place if the
bit for fixed-point overflow in the program mask is 1 (default value in BS2000).

Condition code

0~Zero result = 0
1 Not used.
2~Plus result > 0
3~Overflow fixed-point overflow

100 U3119-J-Z125-2-7600

General instructions LPR

Program interrupts

Type Weight Causes

Fixed-point overflow X’78’ R2 contents =-2 31

Programming notes

R1 may be equal to R2

Examples

Name Operation Operands Remarks

.
Example1 L 0,=F’-1’ Register 0 before: -1

LPR 0,0 Register 0 after: +1
* CC: 2~Plus

.

.
Example2 L 5,=F’-2147483648’ Register 5 : -2 31

LPR 6,5 Register 6 : -2 31

* CC: 3~Overflow and
* possibly program interrupt

.

U3119-J-Z125-2-7600 101

LTR General instructions

Load and Test

Function

The LTR instruction moves a 32-bit fixed-point number from a general-purpose register
to a general-purpose register.
The condition code is set in accordance with the fixed-point number.

Assembler format

Name Operation Operands Remarks

LTR R1,R2

Machine format

LTR [RR] X’12’ R1 R2

0 8 12 15

Description

The fixed-point number in general-purpose register R2 is moved in its original form to
general-purpose register R1, and its value is tested.
Fixed-point overflow cannot occur.

Condition code

0~Zero result = 0
1~Minus result < 0
2~Plus result > 0
3~Overflow Not used.

Program interrupts

None.

Programming notes

R1 may be equal to R2.

The LTR instruction does the same thing as the LR instruction except that it also
sets the condition code.

102 U3119-J-Z125-2-7600

General instructions M, MR

Multiply

Function

The instruction MR and R perform signed multiplication of two 32-bit fixed-point
numbers and create a 64-bit product.
The condition code is left unchanged.

Assembler formats

Name Operation Operands Remarks

MR R1,R2 R1 even-numbered
M R1,D2(X2,B2) R1 even-numbered and

D2(X2,B2): word boundary

Machine formats

MR [RR] X’1C’ R1 R2

M [RX] X’5C’ R1 X2 B2 D2

0 8 12 16 20 31

Description

The R1 field of the instructions MR and M determines a pair of general-purpose
registers R1 and R1+1. R1 must be even-numbered, otherwise a program interrupt will
occur due to an addressing error.

Der multiplicand is taken from the odd-numbered general-purpose register R1+1; the
contents of the even-numbered register R1 are ignored. With the MR instruction, the
multiplier is in general-purpose register R2; with M, it is in the main memory word
addressed by D2(X2,B2). The product is stored in registers R1 and R1+1.

The multiplicand and multiplier are treated as 32-bit signed fixed-point numbers. The
resultant product is a 64-bit fixed-point number with the sign at bit position 0 of
general-purpose register R1.

The sign of the product is computed according to the usual algebraic rules.

U3119-J-Z125-2-7600 103

M, MR General instructions

Condition code

Stays the same.

Program interrupts

Type Weight Causes

Address trans. error X’48’ M : Read access of operand2 illegal.
Addressing error X’5C’ MR, M : R1 not even-numbered.

M : D2(X2,B2) not a word boundary.

Programming notes

With the MR instruction, R2=R1 or R2=R1+1 is permitted. If R2=R1+1, the square
is determined from R2.

The least and greatest possible value for the product are, respectively, +262 and
-262+231.

Examples

The following values of multiplicand and multiplier yields the values shown below for the
product:

Multiplicand Multiplier Product

+29 +17 +493

+29 -17 -493

Minimum and maximum values for the product :

+231-1 -2 31 -2 62+231

-2 31 -2 31 +262

104 U3119-J-Z125-2-7600

General instructions MC

Monitor Call

Function

The MC instruction creates a program interrupt due to a monitor call.
The condition code is left unchanged.

Assembler format

Name Operation Operands Remarks

MC D1(B1),I2 X’00’ I2 X’0F’

Machine format

MC [SI] X’AF’ I2 B1 D1

0 8 16 20 31

Description

A program interrupt occurs when the mask bit for the monitor class determined by the
12 field of the instruction is set to =1.

The address value D1(B1) (either 24 bits or 31 bits long, depending on the address
mode used) serves as the argument for the interrupt routine.

Condition code

Stays the same.

Program interrupts

Type Weight Causes

Addressing error X’5C’ I2 > 15
Monitor interrupt see Programming Notes.

Programming notes

The MC instruction is not supported by BS2000. If it is called anyway, it functions in the
same way as a NOP operation.

U3119-J-Z125-2-7600 105

MH General instructions

Multiply Halfword

Function

The MH instruction performs signed multiplication of a 32-bit fixed-point number and a
16-bit fixed-point number, and stores the lowest-order 32 binary positions of the
product.
The condition code is left unchanged.

Assembler format

Name Operation Operands Remarks

MH R1,D2(X2,B2) D2(X2,B2): halfword boundary

Machine format

MH [RX] X’4C’ R1 X2 B2 D2

0 8 12 16 20 31

Description

The multiplicand is taken from general-purpose register R1, the multiplier from the
halfword addressed in main memory by D2(X2,B2). The lowest-order 32 binary positions
of the product are stored in general-purpose register R1 and replace the multiplicand.

The multiplicand is treated as a 32-bit fixed-point number and the multiplier as a 16-bit
fixed-point number with the sign at the highest-order bit position. The product is a 48-
bit fixed-point number of which only the rightmost 32 binary positions are stored. The
leftmost 16 binary positions, including the sign bit, are lost. There is no test to see
whether the lost binary positions are identical to the value of the highest-order bit of the
stored result.

The sign of the product is computed according to the usual algebraic rules.

Condition code

Stays the same.

106 U3119-J-Z125-2-7600

General instructions MH

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read access of operand2 illegal.
Addressing error X’5C’ D2(X2,B2) not a halfword boundary.

Programming notes

Since the highest-order 16 bits of the real product are discarded, it may happen that
the value and/or the sign position of the result differ from the sign or value of the
real product. Even if this does happen, it is not indicated in the condition code. The
MH instruction should therefore only be used when it is known that the product of
the multiplicand and multiplier will lie within the range of -231 and +231-1.

Examples

The following values for multiplicand and multiplier yield the values shown below for the
result. Note that the result is only identical to the product when the product lies in the
value range of 32-bit fixed-point numbers.

Multiplicand Multiplier Result Remark

+29 +17 +493 arithmetically correct
+29 -17 -493 arithmetically correct

+131072 -32768 0 arithmetically incorrect
correct is -4 295 464 296

+65538 +32767 +2 147 483 646 arithmetically correct

The last example illustrates an arithmetic limit for the MH instruction: values as small as
+65539 and +32767 already yield an arithmetically unusable result.

U3119-J-Z125-2-7600 107

MVC General instructions

Move Characters

Function

The MVC instruction moves 1 to 256 bytes from a main memory area to another main
memory area.
The condition code is left unchanged.

Assembler format

Name Operation Operands Remarks

MVC D1(L,B1),D2(B2) 1 L 256

Machine format

MVC [SS] X’D2’ L-1 B1 D1 B2 D2

0 8 16 20 32 36 47

Description

The character field which is addressed by D2(B2) and has a length of L bytes is moved
byte-to-byte from left to right to the main memory area addressed by D1(B1).

Condition code

Stays the same.

Program interrupts

Type Weight Causes

Address trans. error X’48’ Write access of operand1 or read access
of operand2 illegal.

108 U3119-J-Z125-2-7600

General instructions MVC

Programming notes

The operand fields may overlap.

The overlap option of the MVC instruction can be put to use in order to "erase" a
field, i.e. to pad it with a constant byte value. This is done by storing this byte value
in byte 0 (D1(B1)) of the first operand (e.g. with MVI) and then executing an MVC
with an operand1 address of D1(B1)+1 and an operand2 address of =D1(B1). In
this way, byte 0 is "spread" over the first operand (see example).

For field lengths >256 bytes the MVCL instruction has been provided.

Example

Name Operation Operands

.
MVI FIELD,C’ ’ "Erase" FIELD with
MVC FIELD+1(L’FIELD-1),FIELD blanks
.

U3119-J-Z125-2-7600 109

MVCL General instructions

Move Long

Function

The MVCL instruction moves the contents of a main memory area from left to right into
another main memory area and, if necessary, pads this area to the right with slack
bytes. Both areas may be up to 224 bytes long i.e. 16 MB
The condition code is set in accordance with the difference in length of the two areas.

Assembler formats

Name Operation Operands Remarks

MVCL R1,R2 R1 and R2 even-numbered

Machine format

MVCL [RR] X’0E’ R1 R2

0 8 12 15

Description

The R1 field of the instruction determines the receive field, and the R2 field determines
the source field. R1 and R2 each determine a pair of general-purpose registers,
consisting of registers R1 and R1+1 or R2 and R2+1, respectively. R1 and R2 must be
even-numbered, otherwise no move will take place and a program interrupt will occur
due to an addressing error.
The start addresses of the receive field and the source field are taken from the first
even-numbered register R1 (or R2). Their lengths (in bytes) are determined in the
second, odd-numbered register R1+1 (or R2+1). Register R2+1 also contains the
coding of the slack byte.
The address representation in R1 or R2 depends on which addressing mode is used.
The following assignment applies:

110 U3119-J-Z125-2-7600

General instructions MVCL

24-bit addressing mode 31-bit addressing mode

0 8 31 0 1 8 31

R1 //////// A(operand1) / A(operand1)

R1+1 //////// length operand1 //////// length operand1

R2 //////// A(operand2) / A(operand2)

R2+1 slack byte length operand2 slack byte length operand2

"/" means: "is ignored"

The move operation takes place byte-by-byte from left to right. It ends when the
number of bytes in the source field (as determined by R2+1) has been moved to the
receive field. If this is not enough to reach the length of the receive field (as determined
by R1+1), the receive field is padded with slack bytes whose coding is taken from the
highest-order byte of R2+1.

The move operation will only be performed if the receive field does not overlap with the
source field, or if the overlap occurs in such a way that the receive field does not begin
to the right of the source field. The following rules apply for correct overlapping:

A(receive fld) A(source fld)
or A(receive fld) A(source fld) + Min(L’receive fld, L’source fld)

If incorrect (or "destructive") overlapping occurs, the instruction does not start and the
condition code is set to 3~Overflow.

The MVCL instruction can be interrupted on the hardware side. When an interrupt
occurs, the moves made up to that point are retained in the register pairs R1 and R2
(by storing the incremented addresses and the decremented lengths). Following the
interrupt the move operation resumes at the position where the interrupt occurred.

When the instruction is finished, i.e. the move is complete and any necessary slack
bytes have been added, the following values are stored in register pairs R1 and R2: the
addresses in R1 and R2 are incremented by the length value in registers R1+1 and
R2+1 respectively; registers R1+1 and R2+1 contain 0016 in their lowest-order 3 bytes;
the leftmost 1 or 8 bits in front of the addresses in R1 and R2 are set to 0, but the
leftmost 8 bits of R1+1 and R2+1 are left unchanged (slack byte).

U3119-J-Z125-2-7600 111

MVCL General instructions

Address updating in the source field and receive field take place with mod 224 in 24-bit
addressing mode and with mod 231 in 31-bit addressing mode. Accordingly, once a
move has taken place from or to the byte with the (virtual) address 224-1 or 231-1, the
next move (or padding) operation will take place from or to the byte with the address
0, provided the operands have not finished being processed.

Condition code

0~Equal length of receive field = length of source field
1~Low length of receive field < length of source field
2~High length of receive field > length of source field
3~Overflow Receive field overlaps incorrectly with source field.

Program interrupts

Type Weight Causes

Address trans. error X’48’ Write access of operand1 or
read access of operand2 illegal.

Addressing error X’5C’ R1 or R2 not even-numbered

Programming notes

If the length of the receive field is =0, no move or padding takes place, and only
the condition code is set.

if the length of the source field is =0, the source field is only padded with slack
bytes. In this way, for example, a receive field can be "erased", i.e. padded with a
constant byte value.

The MVCL instruction cannot be used to erase a receive field in the way that is
possible and customary with the MVC instruction, namely by "spreading" its byte 0.
The reason for this is that when the address of the receive field, incremented by 1,
is used as a source field, MVCL causes the instruction to abort due to incorrect
overlapping.

The check for incorrect overlapping, which takes place at the start of execution is
made on the basis of the data in R1 and R2. If incorrect overlapping is detected, the
instruction is aborted, leaving the receive field unchanged. No further check takes
place, so that, for example, it is not known whether all source and receive field
addresses have also been allocated by the operating system.

112 U3119-J-Z125-2-7600

General instructions MVCL

Another way of interpreting the conditions for correct overlapping is as follows: the
receive field must lie in such a relation to the source field that no byte has to be
moved twice.

If the length of the source field is =0 or =1, incorrect overlapping is impossible.

In multiprocessor applications you may have to note the following: Since the
instruction can be interrupted on the hardware side, the receive field may not have
been completely filled (or erased) when it is accessed by another central processing
unit.

The application program must determine on its own whether all addresses of both
operands for the program lie entirely within its own address space. If the instruction
terminates due to an address translation error, the move operation may already
have begun.

Since the MVCL instruction can be interrupted by central processing units working
in parallel, you should not move the MVCL instruction that activates the move
operation. Similarly, you should not move an EX instruction that executes an MVCL
instruction.

Example

The following instructions move 15000 bytes from area SF to area DF and pad the next
5000 bytes in area DF with the character ’*’.

Name Operation Operands

LM 4,5,=A(DF,20000) R4,R5 : operand1
LM 10,11,=A(SF,15000) R10,R11 : operand2
ICM 11,B’1000’,=’*’ Set slack byte in byte 0
MVCL 4,10

 Following MVCL the condition is set to 2~High (20000 > 15000). Register 4 or 10
 contains the address A(DF+20000) or A(SF+15000); registers 5 and 11 contain 00 00
 00 in their rightmost 3 bytes and the value 0016 or the character ’*’ in their leftmost
 byte.
 The prerequisite for this result is that area DF starts either before SF or after
 SF+14999, or that A(DF)=A(SF) (otherwise the condition code is set to 3~Overflow
 and no move took place).

U3119-J-Z125-2-7600 113

MVI General instructions

Move Immediate

Function

The MVI instruction moves one byte (direct operand) to main memory.
The condition code is left unchanged.

Assembler format

Name Operation Operands Remarks

MVI D1(B1),I2 X’00’ I2 X’FF’

Machine format

MVI [SI] X’92’ I2 B1 D1

0 8 16 20 31

Description

The direct operand I2 replaces the main memory byte addressed by D1(B1).

Condition code

Stays the same.

Program interrupts

Type Weight Causes

Address trans. error X’48’ Write access of operand1 illegal.

Example

See example under MVC.

114 U3119-J-Z125-2-7600

General instructions MVN

Move Numerics

Function

The MVN instruction moves the rightmost halfbytes of a main memory area to the
rightmost halfbytes of another main memory area.
The condition code is left unchanged.

Assembler format

Name Operation Operands Remarks

MVN D1(L,B1),D2(B2) 1 L 256

Machine format

MVN [SS] X’D1’ L-1 B1 D1 B2 D2

0 8 16 20 32 36 47

Description

The rightmost halfbytes of the character field which is addressed by D2(B2) and has
the length L bytes (i.e. the numeric parts) are moved to the rightmost halfbytes of the
character field addressed by D1(B1); the leftmost halfbytes of the first operand are left
unchanged.

Condition code

Stays the same.

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read/write access of operand1 or
read access of operand2 illegal.

U3119-J-Z125-2-7600 115

MVN General instructions

Programming notes

The operands may overlap.

The overlap option of MVN can be used in order to "erase" the numeric parts of the
field, i.e. to fill them with a constant value. To do this, you store this value in byte 0
of the first operand (e.g. with OI) and then perform an MVN whose first operand
address is D1(B1)+1 and whose second operand address is D1(B1). This "spreads"
the right portion of byte 0 over the first operand.

Example

Name Operation Operands

.
XC DFIELD(3),DFIELD DFIELD : X’000000’
MVN DFIELD(3),=C’123’ DFIELD after: X’010203’
.

116 U3119-J-Z125-2-7600

General instructions MVO

Move with Offset

Function

The MVO instruction moves a character field in main memory one halfbyte to the left
into another character field.
The condition code is set in accordance with the comparison result.

Assembler format

Name Operation Operands Remarks

MVO D1(L1,B1),D2(L2,B2) 1 L1,L2 16

Machine format

MVO [SS] X’F1’ L1-1 L2-1 B1 D1 B2 D2

0 8 12 16 20 32 36 47

Description

The character field addressed in main memory by D1(B1) (L1 bytes long) is the receive
field; the character field addressed in main memory by D2(B2) (L2 bytes long) is the
source field.

The move operation takes place from right to left. The rightmost 4 bits of each byte in
the source field are moved into the leftmost 4 bits of the opposing byte in the receive
field, and the leftmost 4 bits are moved into the rightmost 4 bits of the preceding byte
in the receive field. The rightmost 4 bits of the lowest-order byte in the receive field are
left unchanged.

U3119-J-Z125-2-7600 117

MVO General instructions

Byte: 0 1 L1-2 L1-1

Receive field: ...

... unchanged

Source field ...

Byte: L2-L1 L2-L1+1 L2-2 L2-1

(In this diagram, L1 is assumed to be less or equal to L2; otherwise the highest-order
byte of the receive field is the byte L1-L2-1, and the highest-order byte in the source field
is byte 0.)

The receive field is padded to the left with 016 if it is longer than the source field; if the
receive field is too short to accommodate all halfbytes of the source field, the highest-
order halfbytes of the source field are lost.

The receive field may overlap with the source field. The move operation is performed as
though each byte of the receive field is stored the moment both of its halfbytes have
been determined.

Condition code

Stays the same.

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read/write access of operand1 or
read access of operand2 illegal.

118 U3119-J-Z125-2-7600

General instructions MVO

Programming notes

The MVO instruction can be used to move a packed decimal number to the right by an
odd number of decimal positions (see example). However, the decimal number is not
checked to see whether it is correctly packed.

Example

Name Operation Operands

.
MVO FIELD,FIELD(L’FIELD-2)
.

The above instruction moves the contents of FIELD 3 halfbytes to the right, but leaves
the rightmost byte of FIELD unchanged. For example, FIELD-before =X’ABCDEF’ is
changed to FIELD-after =X’000ABF’.
If the contents of FIELD are a packed decimal number, the result is equivalent to
integral division by 1000.

U3119-J-Z125-2-7600 119

MVZ General instructions

Move Zones

Function

The MVZ instruction moves the leftmost halfbytes of a main memory area to the
leftmost halfbytes of another main memory area.
The condition code is left unchanged.

Assembler format

Name Operation Operands Remarks

MVZ D1(L,B1),D2(B2) 1 L 256

Machine format

MVZ [SS] X’D3’ L-1 B1 D1 B2 D2

0 8 16 20 32 36 47

Description

The leftmost halfbytes of the character field which is addressed by D2(B2) and is L
bytes long (i.e. the zone parts) are moved from left to right into the leftmost halfbytes
of the character field addressed by D1(B1); the rightmost halfbytes of the first operand
are left unchanged.

Condition code

Stays the same.

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read/write access of operand1 or
read access of operand2 illegal.

120 U3119-J-Z125-2-7600

General instructions MVZ

Programming notes

The operands may overlap.

The overlap option of MVZ can be used in order to "erase" the numeric parts of a
field, i.e. to fill them with a constant value. To do this, you store this value in byte 0
of the first operand (e.g. with NI and OI) and then perform an MVZ whose first
operand address is D1(B1)+1 and whose second operand address is D1(B1). This
"spreads" the left portion of byte 0 over the first operand (see example).

Example

Name Operation Operands

.
NI DFIELD,X’0F’ Sets filler zone
OI DFIELD,X’C0’ in byte 0
MVZ DFIELD+1(L’DFIELD-1),DFIELD

* All leftmost halfbytes
* are set to =C 16.
* The rightmost halfbytes
* are left unchanged.

.

U3119-J-Z125-2-7600 121

N, NC, NI, NR General instructions

AND

Function

The instructions NR, N and NC cause two operands to be ANDed bit by bit.
The condition code is set in accordance with the value of the result.

Assembler formats

Name Operation Operands Remarks

NR R1,R2
N R1,D2(X2,B2) D2(X2,B2): word boundary
NI D1(B1),I2 X’00’ I2 X’FF’
NC D1(L,B1),D2(B2) 1 L 256

Machine formats

NR [RR] X’14’ R1 R2

N [RX] X’54’ R1 X2 B2 D2

NI [SI] X’94’ I2 B1 D1

NC [SS] X’D4’ L-1 B1 D1 B2 D2

0 8 16 20 32 36 47

Description

The bits of the first operand are changed by the opposing bits of the second operand
in accordance with the following table. The result replaces the first operand.

122 U3119-J-Z125-2-7600

General instructions N, NC, NI, NR

Table of AND conjunctions

Bit value Bit value Bit value
in first operand in second operand in result

0 0 0
0 1 0
1 0 0
1 1 1

Operands

Instr. Operand1 Operand2

NR Contents of register R1 Contents of register R2
N Contents of register R1 Word addressed by D2(X2,B2)
NI Byte addressed by D1(B1) Direct operand I2
NC Field addressed by D1(B1) Field addressed by D2(B2)

with length of L bytes with length of L bytes

Condition code

0~Zero result = 0
1~Not Zero result 0
2 Not used.
3 Not used.

Program interrupts

Type Weight Causes

Address trans. error X’48’ N: Read access of operand2 illegal.
NI: Read/write access of operand1

illegal.
NC: Read/write access of operand1 or

read address of operand2 illegal.
Addressing error X’5C’ N: D2(X2,B2) not a word boundary.

U3119-J-Z125-2-7600 123

N, NC, NI, NR General instructions

Programming notes

AND instructions set all bit positions in the first operand to 0 whose opposing bit
positions in the second operand are 0. The other bit positions in the first operand
are left unchanged.

The operands are processed byte-by-byte from left to right.

With NC, the operands may overlap. However, among other things, this means that
earlier byte operands are changed by later ones.

If R1=R2 in the NE instruction, the contents of R1 are not changed, but the
condition code is set.

When using the NI and NC instructions in multiprocessor systems, note the
following:
Memory access operations of the first operand of the NI and NC instructions consist
of reading a byte from memory and then writing the changed value into memory.
These read and write operations on a single byte are not necessarily consecutive, if
another processor or another application (or an input/output channel program)
attempts to modify the memory location in question. A safe way of updating a
shared word in memory is described in Appendix 7.6 and in the programming notes
for the CS and CDS instructions.

Example

Name Operation Operands

.
NI SEMAPHOR,X’F0’ Set rightmost 4 bits of

* byte SEMAPHOR to 0 16;
*
* left unchanged.

.

124 U3119-J-Z125-2-7600

General instructions O, OC, OI, OR

OR

Function

The instructions OR, O, OI and OC cause two operands to be logically ORed bit by bit.
The condition code is set in accordance with the value of the result.

Assembler formats

Name Operation Operands Remarks

OR R1,R2
O R1,D2(X2,B2) D2(X2,B2): word boundary
OI D1(B1),I2 X’00’ I2 X’FF’
OC D1(L,B1),D2(B2) 1 L 256

Machine formats

OR [RR] X’16’ R1 R2

O [RX] X’56’ R1 X2 B2 D2

OI [SI] X’96’ I2 B1 D1

OC [SS] X’D6’ L-1 B1 D1 B2 D2

0 8 16 20 32 36 47

Description

The bits of the first operand are changed by the opposing bits of the second operand
according to the following table. The result replaces the first operand.

U3119-J-Z125-2-7600 125

O, OC, OI, OR General instructions

Table of OR conjunctions

Bit value Bit value Bit value
in first operand in second operand in result

0 0 0
0 1 1
1 0 1
1 1 1

Operands

Instr. Operand1 Operand2

OR Contents of register R1 Contents of register R2
O Contents of register R1 Word addressed by D2(X2,B2)
OI Byte addressed by D1(B1) Direct operand I2
OC Field addressed by D1(B1) Field addressed by D2(B2)

with length of L bytes with length of L bytes

Condition code

0~Zero result = 0
1~Not Zero result 0
2 Not used.
3 Not used.

Program interrupts

Type Weight Causes

Address trans. error X’48’ O: Read access of operand2 illegal.
OI: Read/write access of operand1

illegal.
OC: Read/write access of operand1 or

read access of operand2 illegal.
Addressing error X’5C’ O: D2(X2,B2) not a word boundary.

126 U3119-J-Z125-2-7600

General instructions O, OC, OI, OR

Programming notes

OR instructions set all bit positions in the first operand to 1 for which, in the second
operand, there is an opposing bit position with the value 1. The other bit positions
in the first operand are left unchanged.

The operands are processed byte-by-byte from left to right.

With OC, the operands may overlap. However, among other things, this means that
earlier byte operations are changed by later ones.

If R1=R2 in the OR instruction, i.e. general-purpose register R1 is ORed with itself,
the contents of R1 are not changed, but the condition code is set.

When using the OI and OC instructions in multiprocessor systems, note the
following:
Memory access operations of the first operand of the OI and OC instructions
consist of reading a byte from memory and then writing the changed value into
memory. These read and write operations on a single byte are not necessarily
consecutive, if another processor or another application (or an input/output channel
program) attempts to modify the memory location in question. A safe way of
updating a shared word in memory is described in Appendix 7.6 and in the
programming notes for the CS and CDS instructions.

U3119-J-Z125-2-7600 127

PACK General instructions

Pack

Function

The PACK instruction turns an (unpacked) decimal number in the source field into a
packed decimal number in the receive field.
The condition code is left unchanged.

Assembler format

Name Operation Operands Remarks

PACK D1(L1,B1),D2(L2,B2)

Machine format

PACK [SS] X’F2’ L1-1 L2-1 B1 D1 B2 D2

0 8 12 16 20 32 36 47

Description

D1(L1,B1) addresses the receive field and D2(L2,B2) addresses the source field (where
1 L1,L2 16). The (unpacked) decimal number contained in the source field is
moved to the receive field and converted to packed format.

The source field is not checked to see whether it contains a correct, unpacked decimal
number. Instead, it is treated as though it contains one.

Both operands are processed from right to left. Only the right halfbyte (the numeric
part) of each byte in the source field is used; each left halfbyte is ignored, except for
the left halfbyte in the lowest-order byte of the source field, which is used for the sign.

The sign and the right halfbyte of the lowest-order byte of the source field are moved -
in opposite order - to the lowest-order byte of the receive field. All other right halfbytes
in the source field are moved consecutively to the other bytes of the receive field, with
two halfbytes of the source field always being moved to one byte in the receive field.

If the source field is exhausted before the receive field is filled, i.e. if L2 < 2L1-1, the
highest-order 2L1-L2-1 halfbytes of the receive field are filled with 016. If the receive field
is too short to accommodate all right halfbytes of the source field, i.e. if 2L1 < L2+1,
the highestorder L2-2L1+1 bytes of the source field are ignored.

128 U3119-J-Z125-2-7600

General instructions PACK

The two operands may overlap. In this case, a subsequent byte operation will generally
change an earlier operation of the same instruction. The instruction is executed as
though each byte in the receive field is stored the moment the halfbytes which it needs
have been read in the source field.

Condition code

Stays the same.

Program interrupts

Type Weight Causes

Address trans. error X’48’ Write access of operand1 or
read access of operand2 illegal.

Examples

The sample PACK instruction given below yield the following results:

DFIELD before Sample instruction DFIELD after

any PACK DFIELD(1),=Z’1’ P’1’
any PACK DFIELD(3),=Z’123’ P’00123’
any PACK DFIELD(1),=Z’123’ P’3’ plus decimal overflow
X’89’ PACK DFIELD(1),DFIELD(1) X’98’
X’23456789’ PACK DFIELD(2),DFIELD(4) X’87986789’

The last example illustrates a (hopefully warning) instance of overlapping in which the
source field overwrites itself (!) when the instruction is executed.

U3119-J-Z125-2-7600 129

S, SR General instructions

Subtract

Function

The instructions SR and S perform signed subtraction of two 32-bit fixed-point numbers.
The condition code is set in accordance with the value of the difference.

Assembler formats

Name Operation Operands Remarks

SR R1,R2
S R1,D2(X2,B2) D2(X2,B2): word boundary

Machine formats

SR [RR] X’1B’ R1 R2

S [RX] X’5B’ R1 X2 B2 D2

0 8 12 16 20 31

Description

The SR instruction subtracts the contents of general-purpose register R2 from the
contents of general-purpose register R1, taking the signs into account; the S instruction
subtracts the word addressed in main memory by D2(B2) from the contents of general-
purpose register R1, likewise taking the signs into account. Both operands are treated
as 32-bit signed binary numbers (fixed-point numbers). The difference is likewise a 32-
bit signed binary number, and replaces the original contents of general-purpose register
R1.

Fixed-point overflow occurs when the difference is greater than -231 or less than -231. In
this case, the result in R1 is 232 too small or too large; the condition code is then set
to 3~Overflow and a program interrupt occurs, provided the bit for fixed-point overflow
in the program mask has been set to 1 (default value in BS2000).

Condition code

0~Zero difference = 0
1~Minus difference < 0
2~Plus difference > 0
3~Overflow fixed-point overflow

130 U3119-J-Z125-2-7600

General instructions S, SR

Program interrupts

Type Weight Causes

Address trans. error X’48’ S: Read access of operand2 illegal.
Addressing error X’5C’ S: D2(X2,B2) not a word boundary.
Fixed-point overflow X’78’ Difference > +2 31-1 or < -2 31

Programming notes

Fixed-point overflow occurs whenever a binary position overflow to the sign position
is not equal to the binary position overflow from the sign position. The result, in
register R1, then has the wrong sign at bit position 0.

SR with R1=R2 "zeros" general-purpose register R1 and sets the condition code to
0~Zero. (SLR with R1=R2 likewise zeros general-purpose register R1 but sets the
condition code to 2~Plus).

U3119-J-Z125-2-7600 131

SH General instructions

Subtract Halfword

Function

The SH instruction performs signed subtraction of a 16-bit fixed-point number from a
32-bit fixed-point number.
The condition code is set in accordance with the value of the difference.

Assembler format

Name Operation Operands Remarks

SH R1,D2(X2,B2) D2(X2,B2): halfword boundary

Machine format

SH [RX] X’4B’ R1 X2 B2 D2

0 8 12 16 20 31

Description

The halfword addressed in main memory by D2(X2,B2) is subtracted from the contents
of general-purpose register R1, with the signs being taken into account. The register
operand is treated as a 32-bit fixed-point number, the halfword operand as a 16-bit
fixed-point number, both of them signed. The difference is a 32-bit signed fixed-point
number, and replaces the original contents of general-purpose register R1.
Fixed-point overflow when the difference is greater than 231-1 or less than -231. In this
case, the result in R1 is 232 too small or too large; the condition code is then set to
3~Overflow and a program interrupt occurs, provided the bit for fixed-point overflow in
the program mask has been set to =1 (default value in BS2000).

Condition code

0~Zero difference = 0
1~Minus difference < 0
2~Plus difference > 0
3~Overflow overflow

132 U3119-J-Z125-2-7600

General instructions SH

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read access of operand2 illegal.
Addressing error X’5C’ D2(X2,B2) not a halfword boundary.
Fixed-point overflow X’78’ Difference > +2 31-1 or < -2 31

Programming notes

Fixed-point overflow occurs whenever a binary position overflow to the sign position is
not equal to the binary position overflow from the sign position. The result in register
R1, then has the wrong sign at bit position 0.

U3119-J-Z125-2-7600 133

SL, SLR General instructions

Subtract Logical

Function

The instructions SLR and SL perform logical (unsigned) subtraction of two 32-bit binary
numbers.
The condition code is set in accordance with the value of the difference.

Assembler formats

Name Operation Operands Remarks

SLR R1,R2
SL R1,D2(X2,B2) D2(X2,B2): word boundary

Machine formats

SLR [RR] X’1F’ R1 R2

SL [RX] X’5F’ R1 X2 B2 D2

0 8 12 16 20 31

Description

The SLR instruction logically subtracts the contents of general-purpose register R2 from
the contents of general-purpose register R1; the SL instruction subtracts the contents of
the word addressed in main memory by D2(X2,B2) from the contents of general-
purpose register R1.

Both operands are treated as 32-bit unsigned binary numbers.

The difference is likewise a 32-bit unsigned binary number, and replaces the original
contents of general-purpose register R1.

All 32 bits of both operands are involved in the subtraction operation. Any carry over
beyond bit position 0 is shown in the condition code.

Condition code

0 Not used (see Programming Notes).
1~Minus difference 0, no overflow
2~Plus difference =0, overflow
3~Overflow difference 0, overflow

134 U3119-J-Z125-2-7600

General instructions SL, SLR

Program interrupts

Type Weight Causes

Address trans. error X’48’ SL: Read access of operand2 illegal.
Addressing error X’5C’ SL: D2(X2,B2) not a word boundary.

Programming notes

Logical subtraction consists in adding the ones complements of the two operands
and also adding 1 to the contents of general-purpose register R1 (i.e. not in adding
their twos complement). For this reason, whenever the second operand is =0 an
overflow always occurs, as is shown by the condition code value 2 or 3.

A resulting difference of =0 always creates a condition code of 2~Plus, not 0~Zero.

Logical subtraction always creates the same result as arithmetic subtraction (by
means of SR, S or SH), except that the condition code is set differently and no
program interrupt occurs in case of overflow.

Another way of interpreting the condition code values is as follows:

0 Not used.
1~Minus operand1 < operand2
2~Plus operand1 = operand2
3~Overflow operand1 > operand2

The SL instruction can find use with signed subtraction of fixed-point numbers which
are more than 32 bits long. This is done by using SL instructions to subtract the
lower-order word pairs and using the S instruction to subtract the highest-order
word pair; if, after subtracting a lowest-order word pair, the condition code is set to
1~Minus (i.e. the operand1 word was smaller than the operand2 word), the number
+1 must be subtracted from the difference of the next higher-order word pair (see
example2).

U3119-J-Z125-2-7600 135

SL, SLR General instructions

Example

Name Operation Operands

.
Example1 L 10,=F’1’

SL 10,=F’1’ Register 10: 0
* but CC =2, not =0
* see Programming Notes

.

.
Example2 LM 0,1,FPNO1 Subtraction of two 64-bit
LOWSUB SL 1,FPNO2+4 fixed-point numbers

BNM HIGHSUB
SH 0,=H’1’ FPNO1+4 was < FPNO2+4

HIGHSUB S 0,FPNO2
.

Example 2 illustrates signed subtraction of two 64-bit fixed-point numbers FPNO1 and
FPNO2: the lower-order word pair is subtracted using SL and the higher-order word
pair using S. If the lower-order word pair produces an overflow when subtracted, +1
must be subtracted from the difference of the higher-order word pair. In the example,
the result is located in general-purpose registers 0 and 1.

136 U3119-J-Z125-2-7600

General instructions SLA

Shift Left Single

Function

The SLA instruction shifts a 32-bit fixed-point number in a general-purpose register a
specified number of binary positions to the left, taking the sign into account.
The condition code is set in accordance with the value of the result.

Assembler formats

Name Operation Operands Remarks

SLA R1,D2(B2)
* or also:

SLA R1,<number>

Machine format

SLA [RS] X’8B’ R1 //// B2 D2

0 8 12 16 20 31

Description

The contents of general-purpose register R1 are treated as a 32-bit fixed-point number
with the sign at bit position 0.

The address determined by D2(B2) is not used as the data address, instead, the
rightmost 6 bits of this address form the number of binary positions by which the fixed-
point number is to be shifted to the left. This number lies between 0 and 6310. The
higher-order binary positions of D2(B2) are ignored.

With shift left, the sign is left unchanged; only the remaining 31-bit positions are shifted.
Bit positions freed to the right are filled with 0; bit positions shifted to the left beyond
bit position 1 or R1 are lost.

If one or more bits other than the sign bit are shifted beyond bit position 1 in register
R1, a fixed-point overflow occurs and the condition code is set to 3~Overflow.
Furthermore, if the bit for fixed-point overflow is set to 1 in the program mask (default
value in BS2000), a program interrupt occurs.

Bit positions 12 through 15 in the instruction are ignored.

U3119-J-Z125-2-7600 137

SLA General instructions

Condition code

0~Zero shifted fixed-point number = 0
1~Minus shifted fixed-point number < 0 (bit 0 of R1 =1)
2~Plus shifted fixed-point number > 0 (bit 0 of R1 =0)
3~Overflow One or more bits other than the sign bit were shifted beyond bit position

1 of R1.

Program interrupts

Type Weight Causes

Fixed-point overflow X’78’ see condition code 3~Overflow

Programming notes

If B2=0, D2 alone determine the number of shifts; in this case the B2 entry may be
omitted from the Assembler format.

If the number of shifts is =0 mod 64, register R1 is not changed, but the condition
code is set.

Shifting by a variable number of bit positions is achieved by loading the variable in
general-purpose register B2.

Examples

The examples below yield the following results.

Register 0 before Sample instruction Register 0 after CC

0...001 (+1) SLA 0,1 0...010 (+2) 2

1...111 (-1) SLA 0,1 1....10 (-2) 1

0...001 (+1) SLA 0,30 010...0 (+2 30) 2

0...001 (+1) SLA 0,31 0.....0 (0) 3

10...00 (-2 31) SLA 0,1 10....0 (-2 31) 3

10...00 (-2 31) SLA 0,128 10....0 (-2 31) 1

138 U3119-J-Z125-2-7600

General instructions SLA

Note the two cases of fixed-point overflow (CC =3): this fixed-point overflow comes
about because a non-sign bit was shifted beyond bit position 1. In these cases, the
condition code 3~Overflow indicates that the result is arithmetically incorrect.
The last example illustrates a case without shift: only the lowest-order 6 bits of the shift
number are used, and with 128 these yield the value 0. Register 0 is left unchanged,
but the condition code is set.

U3119-J-Z125-2-7600 139

SLDA General instructions

Shift Left Double

Function

The SLDA instruction shifts a 64-bit fixed-point number in a general-purpose register
pair by a specified number of binary positions to the left, taking the sign into account.
The condition code is set in accordance with the value of the result.

Assembler formats

Name Operation Operands Remarks

SLDA R1,D2(B2) R1 even-numbered
* or also:

SLDA R1,<number> R1 even-numbered

Machine format

SLDA [RS] X’8F’ R1 //// B2 D2

0 8 12 16 20 31

Description

The R1 field of the instruction defines a pair of general-purpose registers, consisting of
registers R1 and R1+1; R1 must be even-numbered, otherwise a program interrupt will
occur due to an addressing error.

Bit positions 12 to 15 of the instruction are ignored.

The address defined D2(B2) is not used as the data address; instead, the rightmost 6
bits of this address form the number of binary positions by which the fixed-point
number is to be shifted to the left. This number lies between 0 and 6310. The higher-
order binary positions of D2(B2) are ignored.

The contents of the general-purpose register pair R1 and R1+1 are treated as a 64-bit
signed fixed-point number. The sign at bit position 0 of the (even-numbered) register R1
is left unchanged, but all other 63 bit positions are shifted. Bit positions freed from the
right are padded with 0, binary positions shifted to the left beyond bit position 1 of R1
are lost.

If one or more bits other than the sign bit are shifted beyond bit position 1 in register
R1, a fixed-point overflow occurs and the condition code is set to 3~Overflow.
Furthermore, if the bit for fixed-point overflow is set to 1 in the program mask (default
value in BS2000), a program interrupt occurs.

140 U3119-J-Z125-2-7600

General instructions SLDA

Condition code

0~Zero shifted fixed-point number = 0
1~Minus shifted fixed-point number < 0 (bit 0 of R1 =1)
2~Plus shifted fixed-point number > 0 (bit 0 of R1 =0)
3~Overflow One or more bits other than the sign bit were shifted beyond bit position

1 of R1.

Program interrupts

Type Weight Causes

Addressing error X’5C’ R1 not even-numbered.
Fixed-point overflow X’78’ see CC 3~Overflow

Programming notes

If B2=0, D2 alone determines the number of shifts; in this case, the B2 entry may
be omitted from the Assembler format.

If the number of shifts is =0 mod 64, R1 and R1+1 are left unchanged, but the
condition code is set.

Shifting by a variable number of bit positions is achieved by loading the variable in
general-purpose register B2.

Examples

The sample instructions below yield the following results:

Register 0,1 before Sample instr. Register 0,1 after CC

0...0 0..01 (+1) SLDA 0,1 00...0 0..010 (+2) 2

1...1 1...1 (-1) SLDA 0,1 11...1 1...10 (-2) 1

01..1 1...1 (+2 63-1) SLDA 0,1 01...1 1...10 (+2 63-2) 3

0...0 1...1 (+2 32-1) SLDA 0,31 01...1 10...0 (+2 63-2 31) 2

10..0 0...0 (-2 63) SLDA 0,1 10...0 0....0 (-2 63) 3

10..0 0...0 (-2 63) SLDA 0,64 10...0 0....0 (-2 63) 1

U3119-J-Z125-2-7600 141

SLDA General instructions

Note the two cases of fixed-point overflow (CC=3): this fixed-point overflow comes
about because a non-sign bit was shifted beyond bit position 1. In these cases, the
condition code 3~Overflow indicates that the result is arithmetically incorrect.
The last example illustrates a case without shift: only the lowest-order 6 bits of the shift
number are used, and with 64 these yield the value 0. Register 0 is left unchanged, but
the condition code is set.

142 U3119-J-Z125-2-7600

General instructions SLDL

Shift Left Double Logical

Function

The SLDL instruction shifts a 64-bit binary number in a general-purpose register pair a
specified number of binary positions to the left. The sign is not taken into account
(logical shift).
The condition code is left unchanged.

Assembler formats

Name Operation Operands Remarks

SLDL R1,D2(B2) R1 even-numbered
* or also:

SLDL R1,<number> R1 even-numbered

Machine format

SLDL [RS] X’8D’ R1 //// B2 D2

0 8 12 16 20 31

Description

The R1 field of the instruction defines a pair of general-purpose registers, consisting of
registers R1 and R1+1; R1 must be even-numbered, otherwise a program interrupt will
occur due to an addressing error.

Bit positions 12 to 15 of the instruction are ignored.

The address defined by D2(B2) is not used as the data address; the rightmost 6 bits of
this address form the number of binary positions by which the fixed-point number is to
be shifted to the left. This number lies between 0 and 6310. The higher-order binary
positions of D2(B2) are ignored.

The contents of the general-purpose register pair R1 and R1+1 are treated as a 64-bit
unsigned fixed-point number. All 64 binary positions in this number are shifted. Bit
positions freed from the right are padded with 0; binary positions shifted beyond bit
positions 0 are lost.

Condition code

Stays the same.

U3119-J-Z125-2-7600 143

SLDL General instructions

Program interrupts

Type Weight Causes

Addressing error X’5C’ R1 not even-numbered.

Programming notes

If B2=0, D2 alone determines the number of shifts; in this case, the B2 entry may
be omitted from the Assembler format.

If the number of shifts is =0 mod 64, R1 and R1+1 (and the condition code as well)
are not changed.

Shifting by a variable number of bit positions is achieved by loading the variable into
general-purpose register B2.

Examples

The sample instructions below yield the following results:

Register 0,1 before Sample instr. Register 0,1 after CC

0...0 0..01 SLDL 0,1 00...0 0..010 unchanged

1...1 1...1 SLDL 0,1 11...1 1...10 unchanged

01..1 1...1 SLDL 0,1 1....1 1...10 unchanged

0...0 1...1 SLDL 0,31 01...1 10...0 unchanged

10..0 0...0 SLDL 0,1 0....0 0....0 unchanged

10..0 0...0 SLDL 0,64 10...0 0....0 unchanged

The reader should compare these examples with those given in the description of the
SLDA instruction. Here, there is not a single case of fixed-point overflow. The last
example illustrates (as with SLDA) a case without shift: only the lower-order 6 bits of
the shift number are used, and with 64 these yield the value 0. The register contents
and the condition code are left unchanged.

144 U3119-J-Z125-2-7600

General instructions SLL

Shift Left Single Logical

Function

The SLL instruction shifts a 32-bit binary number in a general-purpose register a
specified number of binary positions to the left. The sign is not taken into account.
The condition code is left unchanged.

Assembler formats

Name Operation Operands Remarks

SLL R1,D2(B2)
* or also:

SLL R1,<number>

Machine format

SLL [RS] X’89’ R1 //// B2 D2

0 8 12 16 20 31

Description

The contents of general-purpose register R1 are treated as a 32-bit unsigned binary
number.

The address defined by D2(B2) is not used as the data address; instead, the rightmost
6 bits of this address form the number of binary positions by which the binary number
is to be shifted to the left. This number lies between 0 and 6310. The higher-order
binary positions of D2(B2) are ignored.

With shift left, all 32 bit positions are shifted. Bit positions freed from the right are
padded with 0; binary positions shifted to the left beyond bit position 0 are lost.

Bit positions 12 to 15 of the instruction are ignored.

Condition code

Stays the same.

Program interrupts

None.

U3119-J-Z125-2-7600 145

SLL General instructions

Programming notes

If B2=0, D2 alone determines the number of shifts; in this case, the B2 entry may
be omitted from the Assembler format.

If the number of shifts is =0 mod 64, register R1 (and the condition code) are left
unchanged.

Shifting by a variable number of bit positions is achieved by loading the variable in
general-purpose register B2.

Examples

The sample instructions below yield the following results:

Register 0 before Sample instr. Register 0 after CC

00....01 SLL 0,1 00....010 unchanged

11....11 SLL 0,1 11....110 unchanged

10....00 SLL 0,1 00....000 unchanged

10....00 SLL 0,64 10....000 unchanged

The last example illustrates a case without shift: only the lowest-order 6 bits of the shift
number are used, and with 64 these yield the value 0. Neither the registers nor the
condition code is changed.

146 U3119-J-Z125-2-7600

General instructions SPM

Set Program Mask

Function

The SPM instruction sets the program mask and the condition code to specified values.
The condition code is set in accordance with the new condition code value.

Assembler format

Name Operation Operands Remarks

SPM R1

Machine format

SPM [RR] X’04’ R1 ////

0 8 12 15

Description

Bit positions 2 and 3 of general-purpose register R1 replace the (previous) value of the
condition code, and bit positions 4 to 7 replace the (previous) value of the program
mask.

Bit positions 0 and 1 as well as 8 to 31 of general-purpose register R1 are ignored.
Similarly, bit positions 12 to 15 of the SPM instruction are ignored.

Condition code

0~Equal Bit positions 2 and 3 of R1 are =002.
1~Low Bit positions 2 and 3 of R1 are =012.
2~High Bit positions 2 and 3 of R1 are =102.
3~Overflow Bit positions 2 and 3 of R1 are =112.

Program interrupts

None.

U3119-J-Z125-2-7600 147

SPM General instructions

Programming notes

The SPM instruction makes it possible to change the program mask, which is preset
by BS2000 to (1111)2. This enables the application program to suppress the
customary program interrupt when any of the four types of events listed below
occur. There can be good reasons for doing this. For example, in this way you can
regularly switch off the unavoidable program interrupts due to significance which
occur in programs that carry out intensive floating-point operations.
However, it is good programming style to reset the program mask afterwards to its
original state.

The bits in the program mask have the following meaning (from left to right):

Bit in program mask Bit pos. in R1 Meaning

0 4 Fixed-point overflow
1 5 Decimal overflow
2 6 Exponent underflow
3 7 Significance

Example

After

Name Operation Operands

.
* exponent underflow
*
*

ICM 15,B’1000’,=B’00111100’
SPM 15

*
* significance

.

the condition code is set to 3~Overflow and program interrupts due to exponent
underflow and significance are suppressed.

148 U3119-J-Z125-2-7600

General instructions SRA

Shift Right Single

Function

The SRA instruction shifts a 32-bit fixed-point number in a general-purpose register a
specified number of binary positions to the right. The sign is taken into account.
The condition code is set in accordance with the value of the result.

Assembler formats

Name Operation Operands Remarks

SRA R1,D2(B2)
* or also:

SRA R1,<number>

Machine format

SRA [RS] X’8A’ R1 //// B2 D2

0 8 12 16 20 31

Description

The contents of general-purpose register R1 are treated as a 32-bit fixed-point number
with the sign at bit position 0.

The address defined by D2(B2) is used as the data address; instead, the rightmost 6
bits of this address form the number of binary positions by which the fixed-point
number is to be shifted to the right. This number lies between 0 and 6310. The higher-
order binary positions of D2(B2) are ignored.

With shift right, the sign is left unchanged; only the remaining 31 bits are shifted. Bit
positions freed from the left are padded with the value of this sign; binary positions
shifted to the right beyond bit position 31 of R1 are lost.

Bit positions 12 to 15 of the instruction are ignored.

Condition code

0~Zero shifted fixed-point number = 0
1~Minus shifted fixed-point number < 0 (bit 0 of R1 =1)
2~Plus shifted fixed-point number > 0 (bit 0 of R1 =0)
3 Not used.

U3119-J-Z125-2-7600 149

SRA General instructions

Program interrupts

None.

Programming notes

If B2=0, D2 alone determines the number of shifts; in this case, the B2 entry may
be omitted from the Assembler format.

If the number of shifts is 0 mod 64, R1 is left unchanged, but the condition code is
set.

Shifting negative fixed-point numbers to the right causes "downward rounding" to
the next lowest negative integer. Thus, for example, the number -1 again yields the
number -1 no matter how it is rightshifted; and the number -5, when shifted 2 binary
positions to the right (i.e. when divided by 4), yields the number -2 (and not -1). For
further information on this point see the examples.

Examples

The sample instructions below yield the following results:

Register 0 before Sample instruction Register 0 after CC

0..0101 (+5) SRA 0,2 0..0001 (+1) 2

1..1011 (-5) SRA 0,2 1..1110 (-2) 1

0..0101 (+5) SRA 0,3 0..0000 (0) 0

1..1011 (-5) SRA 0,3 1..1111 (-1) 1

0..0001 (+1) SRA 0,31 0..0000 (0) 0

1..1111 (-1) SRA 0,31 1..1111 (-1) 1

01..111 (+2 31-1) SRA 0,31 0..0000 (0) 0

10..001 (-2 31+1) SRA 0,31 1..1111 (-1) 1

In each of the examples, right shifting of a positive fixed-point number is contrasted
with right shifting of the negative pendant in order to point out the perhaps unfamiliar
differences between them.

150 U3119-J-Z125-2-7600

General instructions SRDA

Shift Right Double

Function

The SRDA instruction shifts a 64-bit fixed-point number in a general-purpose register
pair a specified number of binary positions to the right. The sign is taken into account.
The condition code is set in accordance with the value of the result.

Assembler formats

Name Operation Operands Remarks

SRDA R1,D2(B2) R1 even-numbered
* or also:

SRDA R1,<number> R1 even-numbered

Machine format

SRDA [RS] X’8E’ R1 //// B2 D2

0 8 12 16 20 31

Description

The R1 field of the instruction defines a pair of general-purpose registers, consisting of
registers R1 and R1+1; R1 must be even-numbered, otherwise a program interrupt will
occur due to an addressing error.

Bit positions 12 to 15 of the instruction are ignored.

The address defined by D2(B2) is not used as the data address; instead, the rightmost
6 bits of this address form the number of binary positions by which the fixed-point
number is to be shifted to the right. This number lies between 0 and 6310. The higher-
order binary positions of D2(B2) are ignored.

The contents of the general-purpose register pair R1 and R1+1 are treated as a 64-bit
signed fixed-point number. The sign at bit position 0 of the (even-numbered) register R1
is left unchanged, but all other 63 bit positions are shifted. Bit positions freed from the
left are padded with 0; binary positions shifted to the right beyond bit position 31 of
R1+1 are lost.

U3119-J-Z125-2-7600 151

SRDA General instructions

Condition code

0~Zero shifted fixed-point number = 0
1~Minus shifted fixed-point number < 0 (bit 0 of R1 =1)
2~Plus shifted fixed-point number > 0 (bit 0 of R1 =0)
3 Not used.

Program interrupts

Type Weight Causes

Addressing error X’5C’ R1 not even-numbered.

Programming notes

If B2=0, D2 alone determines the number of shifts; in this case, the B2 entry may
be omitted from the Assembler format.

If the number of shifts is =0 mod 64, R1 and R1+1 are left unchanged, but the
condition code is set.

Shifting negative fixed-point numbers to the right causes "downward rounding" to
the next lowest negative integer. Thus, for example, the number -1 again yields the
number -1 no matter it is rightshifted; and the number -5, when shifted 2 binary
positions to the right (i.e. when divided by 4), yields the number -2 (and not -1). For
further information on this point see the examples.

152 U3119-J-Z125-2-7600

General instructions SRDA

Examples

The sample instructions below yield the following results:

Register 0,1 before Sample instr. Register 0,1 after CC

0...0 0..0101 (+5) SRDA 0,2 00...0 0..01 (+1) 2

1...1 1..1011 (-5) SRDA 0,2 11...1 1..10 (-2) 1

0...0 0..0101 (+5) SRDA 0,3 00...0 0..00 (0) 0

1...1 1..1011 (-5) SRDA 0,3 11...1 1..11 (-1) 1

0...0 0...001 (+1) SRDA 0,63 00...0 0..00 (0) 0

1...1 1.....1 (-1) SRDA 0,63 11...1 1...1 (-1) 1

01..1 1.....1 (+2 63-1) SRDA 0,63 00...0 0...0 (0) 0

10..0 0....01 (-2 63+1) SRDA 0,63 11...1 1...1 (-1) 1

In each of the examples, right shifting of a positive fixed-point number is contrasted
with right shifting of the negative pendant in order to point out the perhaps unfamiliar
differences between them.

U3119-J-Z125-2-7600 153

SRDL General instructions

Shift Right Double Logical

Function

The SRDL instruction shifts a 64-bit binary number in a general-purpose register a
specified number of binary positions to the right. The sign is not taken into account
(logical shift).
The condition code is left unchanged.

Assembler formats

Name Operation Operands Remarks

SRDL R1,D2(B2) R1 even-numbered
* or also:

SRDL R1,<number> R1 even-numbered

Machine format

SRDL [RS] X’8C’ R1 //// B2 D2

0 8 12 16 20 31

Description

The R1 field of the instruction defines a pair of general-purpose registers, consisting of
registers R1 and R1+1; R1 must be even-numbered, otherwise a program interrupt will
occur due to an addressing error.

Bit positions 12 to 15 of the instruction are ignored.

The address defined by D2(B2) is not used as the data address; instead, the rightmost
6 bits of this address form the number of binary positions by which the fixed-point
number is to be shifted to the left. This number lies between 0 and 6310. The higher-
order binary positions of D2(B2) are ignored.

The contents of the general-purpose register pair R1 and R1+1 are treated as a 64-bit
unsigned fixed-point number. All 64 bits of this number are shifted. Bit positions freed
from the left are padded with 0; binary positions shifted to the right beyond bit position
31 or R1+1 are lost.

Condition code

Stays the same.

154 U3119-J-Z125-2-7600

General instructions SRDL

Program interrupts

Type Weight Causes

Addressing error X’5C’ R1 not even-numbered.

Programming notes

If B2=0, D2 alone determines the number of shifts; in this case, the B2 entry may
be omitted from the Assembler format.

If the number of shifts is 0 mod 64, R1 and R1+1 (and the condition code) are left
unchanged.

Examples

The sample instructions below yield the following results

Register 0,1 before Sample instr. Register 0,1 after CC

0...0 0..0101 SRDL 0,2 00...0 0..0001 unchanged

1...1 1..1011 SRDL 0,2 001..1 1..1110 unchanged

1...1 1.....1 SRDL 0,63 00...0 0..0001 unchanged

01..1 1.....1 SRDL 0,63 00...0 0..0000 unchanged

Unlike the SRDA instruction, with SRDL the value of bit position 0 in register R1 is not
spread to the right; instead, bit positions freed from the left are always padded with 0.

U3119-J-Z125-2-7600 155

SRL General instructions

Shift Right Single Logical

Function

The SRL instruction shifts a 32-bit binary number in a general-purpose register a
specified number of binary positions to the right. The sign is not taken into account
(logical shift).
The condition code is left unchanged.

Assembler formats

Name Operation Operands Remarks

SRL R1,D2(B2)
* or also:

SRL R1,<number>

Machine format

SRL [RS] X’88’ R1 //// B2 D2

0 8 12 16 20 31

Description

The contents of general-purpose register R1 are treated as a 32-bit unsigned fixed-point
number.

The address defined by D2(B2) is not used as the data address; instead, the rightmost
6 bits of this address from the number of binary positions by which the fixed-point
number is to be shifted to the right. This number lies between 0 and 6310. The higher-
order binary positions of D2(B2) are ignored.

All 32 binary positions are shifted to the right. Bit positions freed from the left are
padded with 0. Binary positions shifted to the right beyond bit position 31 of R1 are
lost.

Bit positions 12 to 15 of the instruction are ignored.

Condition code

Stays the same.

156 U3119-J-Z125-2-7600

General instructions SRL

Program interrupts

None.

Programming notes

If B2=0, D2 alone determines the number of shifts; in this case, the B2 entry may
be omitted from the Assembler format.

If the number of shifts is =0 mod 64, R1 (and the condition code) are left
unchanged.

Examples

The sample instructions below yield the following results:

Register 0 before Sample instr. Register 0 after CC

0..0101 SRL 0,2 0....01 unchanged

1..1011 SRL 0,2 001..10 unchanged

10....0 SRL 0,31 0....01 unchanged

01....1 SRL 0,31 0.....0 unchanged

Unlike the SRA instruction, with SRL the value of bit position 0 in register R1 is not
spread to the right; instead, bit positions freed from the left are always padded with 0.

U3119-J-Z125-2-7600 157

ST, STC, STH General instructions

Store

Function

The ST instruction moves the contents of a general-purpose register to a word in main
memory.
The STH instructions moves bytes 2 and 3 of a general-purpose register to a halfword
in main memory.
The STC instruction moves byte 3 of a general-purpose register to a byte in main
memory.
The condition code is left unchanged.

Assembler formats

Name Operation Operands Remarks

ST R1,D2(X2,B2) D2(X2,B2): word boundary
STH R1,D2(X2,B2) D2(X2,B2): halfword boundary
STC R1,D2(X2,B2)

Machine formats

ST [RX] X’50’ R1 X2 B2 D2

STH [RX] X’40’ R1 X2 B2 D2

STC [RX] X’42’ R1 X2 B2 D2

0 8 12 16 20 31

Description

ST: The contents of general-purpose register R1 are stored in the full word
addressed by D2(X2,B2).

STH: Bit positions 16 to 31 of general-purpose register R1 are stored in the halfword
addressed by D2(X2,B2).

STC: Bit positions 24 to 31 of general-purpose register R1 are stored in the byte
addressed by D2(X2,B2).

158 U3119-J-Z125-2-7600

General instructions ST, STC, STH

Instr. Operand1 Operand2

ST Bytes 0 to 3 of register R1 Word addressed by D2(X2,B2)
STH Bytes 2 and 3 of register R1 Halfword addressed by D2(X2,B2)
STC Byte 3 of register R1 Byte addressed by D2(X2,B2)

Condition code

Stays the same.

Program interrupts

Type Weight Causes

Address trans. error X’48’ Write access to operand2 illegal.
Addressing error X’5C’ STH: D2(X2,B2) not a halfword boundary

ST : D2(X2,B2) not a word boundary

U3119-J-Z125-2-7600 159

STCK General instructions

Store Clock

Function

The STCK instruction moves the current value of the clock to a doubleword in main
memory.

Assembler format

Name Operation Operands Remarks

STCK D2(B2) D2(B2): doubleword boundary

Machine format

STCK [S] X’B205’ B2 D2

0 16 20 31

Description

The clock is a 64-bit unsigned binary number in an internal register of the central
processing unit. After every microsecond, i.e. every 10-6 seconds, this binary number is
incremented logically by 4096 (212). The STCK instruction causes the current value of
this binary number to be moved to the doubleword addressed in main memory by
D2(B2).

Many central processing units have a clock with a finer resolution. This is indicated by
the fact that incrementation is more frequent and the increment is smaller than 4096. In
any case, however, every 10-6 seconds bit positions 51 of the clock is incremented by
1.

Condition code

0~Zero Clock time set relative to 1.1.1900, 0:00 o’clock.
1 Not used under BS2000.

160 U3119-J-Z125-2-7600

General instructions STCK

Program interrupts

Type Weight Causes

Address trans. error X’48’ Write access of operand2 illegal.
Addressing error X’5C’ D2(B2) not a doubleword boundary.

Programming notes

The clock is useful for calculating the absolute time lapse between two events. To
calculate the amount of time by a specific process, you should use the BS2000
macro GEPRT. The date and time of day are provided by the BS2000 macro
GDATE.

Every time the BS2000 operating system is initialized, the clock is set to a value
relative to the base date January 1, 1900, 0:00 o’clock, so that the binary value 0 of
the clock corresponds to this date. Thus, for example, on January 1, 1987, the clock
would have the value (87*365+21)*24*60*60*106*212

=(9C 0F 80 D6 C0 00 00 00)16.

By incrementing the clock by 212 after every microsecond, it follows that bit position
31 is incremented by 1 every 1.048576 seconds. Thus, unless a finer resolution is
required, the first word of the doubleword stored by STCK is sufficient.

U3119-J-Z125-2-7600 161

STCK General instructions

Example

Name Operation Operands

.
TIMEBEF DS D
TIMEAFT DS D
TIMEDIFF DC PL8’0.00’

.

.

.
STCK TIMEBEF

.

< Execution of operation to be measured >

.
STCK TIMEAFT
LM 0,1,TIMEAFT Form diff TIMEAFT-TIMEBEF
SL 1,TIMEBEF+4
BNL *+6 Carry over handling
BCTR 0,0
S 0,TIMEBEF
D 0,=F’40960000’ Scaling of 100th sec.
CVD 1,TIMEDIFF Quotient in register 1

.

The example illustrates how to use the STCK instruction to measure time. The clock is
read before and after the operation. Then the difference between the two is calculated.
Following the S instruction, registers 0 and 1 contain the difference in multiples of
4’’096’000.000th seconds as a 64-bit fixed-point number. (The right part of the
difference is formed by logical subtraction, the left one by signed subtraction.) The D
instruction supplies the time, rounded to 100th seconds, in general-purpose register 1,
and the CVD instruction converts this result into packed decimal form.

162 U3119-J-Z125-2-7600

General instructions STCM

Store Characters under Mask

Function

The STCM instruction moves selected bytes of a general-purpose register to a field in
main memory.
The condition code is left unchanged.

Assembler format

Name Operation Operands Remarks

STCM R1,M3,D2(B2) B’0000’ M3 B’1111’

Machine format

STCM [RS] X’BE’ R1 M3 B2 D2

0 8 12 16 20 31

Description

The 4 bits of the "mask" M3 correspond one-to-one with the 4 bytes of general-purpose
register R1 (from left to right in both the mask and the register). Those bytes in R1
which lie opposite ones in the mask are moved to consecutive bytes in the main
memory area addressed by D2(B2).

Condition code

Stays the same.

Program interrupts

Type Weight Causes

Address trans. error X’48’ Write access of operand2 illegal.

U3119-J-Z125-2-7600 163

STCM General instructions

Programming notes

The length in bytes of the main memory area is equal to the number of ones in the
mask.

When a mask consisting entirely of ones is used (B’1111’), the STCM instruction has
the same effect as the ST instruction, except that the main memory field does not
have to be aligned on a word boundary.

Example

Name Operation Operands

.
STCM 15,B’0101’,FIELD Store second and fourth

* bytes of register 15
* in the main memory bytes
* FIELD and FIELD+1

.

164 U3119-J-Z125-2-7600

General instructions STM

Store Multiple

Function

The STM instruction stores the contents of (up to 16) consecutive general-purpose
registers in consecutive words in main memory.
The condition code is left unchanged.

Assembler format

Name Operation Operands Remarks

STM R1,R3,D2(B2) D2(B2): word boundary

Machine format

STM [RS] X’90’ R1 R3 B2 D2

0 8 12 16 20 31

Description

The contents of consecutive general-purpose registers, beginning with R1 and ending
with R3, are moved to consecutive words in main memory. The first word is addressed
by D2(B2).
If R1 > R3, storage takes place from general-purpose register R1 to general-purpose
register 0 to register R3. If R1=R3, only one general-purpose register is stored.

Instr. Operand1 Operand2

STM Contents of registers R1 to R3 Word sequence addressed by D2(B2)
No of words =R3-R1+1, if R3 R1

=R3-R1+17, if R3<R1

Condition code

Stays the same.

U3119-J-Z125-2-7600 165

STM General instructions

Program interrupts

Type Weight Causes

Address trans. error X’48’ Write access of operand2 illegal.
Addressing error X’5C’ D2(B2) not a word boundary.

Example

Name Operation Operands

.
STM 15,0,SAVE The contents of general-purpose

* registers 15 and 0 are stored
* in the two consecutive words
* SAVE and SAVE+4.

.

166 U3119-J-Z125-2-7600

General instructions SVC

Supervisor Call

Function

The SVC instruction calls a (privileged) routine of the operating system.
The condition code is left unchanged

Assembler format

Name Operation Operands Remarks

SVC I X’00’ I X’FF’

Machine format

SVC [RR] X’0A’ I

0 8 15

Description

The SVC instruction activates a supervisor (Control System) call and also moves the
contents of its I field to a privileged register of the central processing unit. The further
execution of the instruction takes place in the privileged status of the central processing
units, and is therefore described here.

Condition code

Stays the same.

Program interrupts

None.

Programming notes

The SVC instruction is part of the expansion of many BS2000 macros, e.g. the WROUT
macro. It causes these macros to be transferred to the BS2000 system routines. By
incorporating SVC into macros, the user is relieved of having to memorize the
corresponding SVC code, among other things. This SVC instruction also facilitates
portability, e.g. when converting to a new BS2000 version.

U3119-J-Z125-2-7600 167

TM General instructions

Test under Mask

Function

The TM instruction tests selected bit positions of a byte in main memory.
The condition code is set in accordance with the test result.

Assembler format

Name Operation Operands Remarks

TM D1(B1),I2 B’00000000’ I2 B’11111111’

Machine format

TM [SI] X’91’ I2 B1 D1

0 8 16 20 31

Description

The direct operand I2 of the instruction is used as a mask to test selected bits of the
byte addressed in main memory by D1(B1). The 8 bits of the mask correspond one-to-
one with the 8 bits of the byte to be tested (from left to right in both operands). Each
bit value of 1 in the mask selects the corresponding bit in the main memory byte and
tests it. If all tested bits are =0, the condition code is set to 0~Zero; if they are all =1,
the condition code is set to 3~Ones; and if bits of value 0 and bits of value 1 occur
among the tested bits, the condition code is set to 1~Mixed.

Condition code

0~Zeroes All tested bits are =0.
1~Mixed The tested bits are neither all =0 nor all =1.
2 Not used.
3~Ones all tested bits are =1.

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read access of operand1 illegal.

168 U3119-J-Z125-2-7600

General instructions TM

Programming notes

The assembler [1] has "extended mnemonic operation codes" at its disposal for branch
instructions following the T instruction:

 BZ or BRZ (Branch when Zeroes) for querying for pure 02 bit pattern

 BO or BRO (Branch when Ones) for querying for pure 12 bit pattern

 BM or BRM (Branch when Mixed) for querying for mixed 02-12 bit pattern

A complete list of all extended mnemonic operation codes can be found in the
Appendix.

Examples

The sample instructions below set the following condition codes:

Name Operation Operands CC Query by e.g.:

.
TESTBYTE DC X’87’

.

.

.
Example1 TM TESTBYTE,X’87’ 3 BO, BRO
Example2 TM TESTBYTE,X’70’ 0 BZ, BRZ
Example3 TM TESTBYTE,X’88’ 1 BM, BRM

.

U3119-J-Z125-2-7600 169

TR General instructions

Translate

Function

The TR instruction sets the bytes of a target field in accordance with a conversion
table.
The condition code is left unchanged.

Assembler format

Name Operation Operands Remarks

TR D1(L,B1),D2(B2) 1 L 256

Machine format

TR [SS] X’DC’ L-1 B1 D1 B2 D2

0 8 16 20 32 36 47

Description

D1(B1) addresses the "target field" (L bytes long), and D2(B2) addresses the
"conversion table". Prior to instruction execution, the target field contains the bytes to
be converted; afterwards, it contains the converted bytes.

The target field is processed byte-by-byte from left to right. Each byte of the target field
("argument byte") is added individually to the start address of the conversion table. The
sum addresses a byte ("function byte") in the conversion table. The function byte then
replaces the original argument byte in the target field. The instruction terminates when
all argument bytes have been replaced by function bytes. The addition of each
argument byte to the start address of the conversion table takes place logically, with
the argument byte being interpreted as an unsigned 8-bit number; the sum is either 24
or 31 bits long, depending on the addressing mode used.

The conversion table is not changed unless it overlaps with the target field. In case of
overlap, no condition code is set, but earlier byte conversions are changed by
subsequent ones, among other things.

Condition code

Stays the same.

170 U3119-J-Z125-2-7600

General instructions TR

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read/write access of operand1 or
read access of operand2 illegal.

Programming notes

The TR instruction can be used to convert input data from one code to another, e.g.
from ASCII to EBCDIC or from lowercase letters to uppercase (see example 1).

The TR instruction can also be used to put the bytes of a target field into a different
sequence. This is done by storing a "pattern" in the target field and using the source
field, with the bytes to be put into a new sequence, as a "conversion table". Byte i
in this pattern, (i=0,1,...,L-1) must contain the (binary) place number of that byte in
the source field which is to be put on byte i in the target field. If, for example, a 3-
byte target field is to be "cyclically permuted" (e.g. the sequence a-b-c is to be
changed to c-a-b), byte 0 of the target field (i.e. the pattern) must contain the value
X’02’ (=place number of the source byte ’c’), byte 2 must contain the value X’00’
and byte 2 the value X’01’ (for further information see example 2).

The conversion table is as long as the value of the largest argument byte plus 1.
For safety’s sake, the maximum length of 256 bytes is usually taken for every
conversion table, and all bytes in the table are also defined with this length. Only if
you are sure that the value of the largest argument byte is less than (FF)16, or that
individual argument bytes values will not occur, should you depart from this
convention.

U3119-J-Z125-2-7600 171

TR General instructions

Examples

Example 1

The following TR instruction can be used to convert a character string CHARFLD from
uppercase to lowercase:

Name Operation Operands

.
CONVTB DS 0C

ORG CONVTB+’a’
DC ’ABCDEFGHI’
ORG CONVTB+’j’
DC ’JKLMNOPQR’
ORG CONVTB+’s’
DC ’STUVWXYZ’
ORG
.
.
.
TR CHARFLD,CONVTB
.

172 U3119-J-Z125-2-7600

General instructions TR

Example 2

Below is a method of moving a character field ORGFIELD to a character field INVFIELD
and at the same time "inverting" its contents, i.e. making the last byte in ORGFIELD the
first byte in INVFIELD, the next-to-last byte in ORGFIELD the second byte in INVFIELD,
and so on:

Name Operation Operands

.
LA 0,L’ORGFIELD Pad INVFIELD with
LA 1,0 place numbers

MUSTERN BCTR 0,0 L-1, L-2,..., 0
STC 0,INVFIELD(1)
LA 1,1(1)
LTR 0,0
BNE MUSTERN
TR INVFIELD(L’ORGFIELD),ORGFIELD
.

These instructions will convert, for example,

ORGFIELD DC ’0123456789’

into the inverted field

INVFIELD DC ’9876543210’

U3119-J-Z125-2-7600 173

TRT General instructions

Translate and Test

Function

The TRT instruction tests the bytes of a target field against a conversion table.
The condition code is set in accordance with the results of the test.

Assembler format

Name Operation Operands Remarks

TRT D1(L,B1),D2(B2) 1 L 256

Machine format

TRT [SS] X’DD’ L-1 B1 D1 B2 D2

0 8 16 20 32 36 47

Description

D1(B1) addresses the "target field" (L bytes long); D2(B2) addresses the "conversion
table".

The target field is processed byte-by-byte from left to right. Each byte of the target field
("argument byte") is added individually to the start address of the conversion table. The
sum addresses a byte in the conversion table ("function byte"). If this function byte is

0016, the instruction is terminated; otherwise, the next argument byte is processed.

If all the function bytes in the conversion table are =0016, the instruction is terminated
with the condition code 0~Zero.

The first function byte that is 0016 terminates the instruction. The condition code is set
2~Plus if the associated argument byte was the last byte in the target field; otherwise,
the condition code is set to 1~Minus. The address of the associated argument byte is
entered in general-purpose register 1, and the non-zero function byte is entered in
general-purpose register 2.

The addition of each argument byte to the start address of the conversion table
proceeds logically, with the argument byte being interpreted as an unsigned 8-bit
number; the sum is either 24 or 31 bits long, depending on the addressing mode used.

Neither the conversion table nor the target field is changed, not even in the case of
overlapping (which is permitted).

174 U3119-J-Z125-2-7600

General instructions TRT

General-purpose registers 1 and 2 are only changed when a function byte 0016 is
encountered.
In 24-bit addressing mode, the 24-bit argument address is entered in bit positions 8 to
31 of general-purpose register 1, and bit positions 0 to 7 are left unchanged; in 31-bit
addressing mode, the 31-bit argument byte address is entered in bit positions 1 to 31
of register 1, and bit position 0 is set to 0.
The value of the first non-zero function byte is entered in bit positions 24 to 31 of
general-purpose register 2; bit positions 0 to 23 are left unchanged.

Condition code

0~Zero All function bytes are =0016.
1~Minus A function byte not equal to 0016 was encountered before the last

argument byte in the target field was processed.
2~Plus The argument byte belonging to the last byte in the target field was 0016.
3 Not used.

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read access of operand1 or operand2
illegal.

Programming notes

The conversion table is as long as the value of the largest processed argument
byte, plus 1.

Unlike the TR instruction, with the TRT instruction the target table is left unchanged.

The TRT instruction uses general-purpose registers 1 and 2, although they are not
specified in the instruction.

Since general-purpose registers 1 and 2 are not always changed, and even when
they are they are not completely replaced, we recommend setting these two
registers explicitly prior to TRT, e.g. to the address of the first byte after the
memory space to be processed.

The TRT instruction can be used to check a target field for characters which have a
special meaning, e.g. which are illegal. This is done by setting all of those function
bytes in the conversion table that are identical to these characters to a value 0016,
and setting all other bytes to the value =0016.

U3119-J-Z125-2-7600 175

TRT General instructions

Example

The target field DFIELD is to be checked for occurrences of "+" or "-". This can be done
by declaring the following data fields:

Name Operation Operands

.
CONVTB DC 256X’00’ Function byte 00 for all

ORG CONVTB+’+’ other characters
DC X’01’ Function byte 01 for +
ORG CONVTB+’-’
DC X’02’ Function byte 02 for -
ORG
.

and entering the following instructions:

.
SR 1,1 Erase registers 1 and 2
SR 2,2 see Programming Notes
TRT DFIELD,CONVTB
BE NOSIGN No + or - in DFIELD
BH TRAILING + or - in final byte
BL EMBEDDED + or -, but not in final byte

.

In the case of TRAILING and EMBEDDED, general-purpose register 1 contains the
address of the first "+" or "-" in DFIELD (either 24 bits or 31 bits long, depending on the
addressing mode used), and general-purpose register 2 contains the associated
function byte in its lowest-order byte, i.e. in this case either 0116 or 0216. Note the
concluding ORG instruction: it prevents any subsequent data declaration from
extending into CONVTB.

176 U3119-J-Z125-2-7600

General instructions TS

Test and Set

Function

The TS instruction sets the condition code in accordance with the value of the highest-
order of a main memory byte. It then overwrites this byte with (FF)16. This instruction
cannot be interrupted while it is being executed.

Assembler format

Name Operation Operands Remarks

TS D2(B2)

Machine format

TS [S] X’93’ /////// B2 D2

0 8 16 20 31

Description

The highest-order bit in the main memory byte addressed by D2(B2) is tested. If it is
=0, the condition code is set to 0~Zero; if not, the condition code is set to 1~Not
Zero. Then all bits in the byte are set to 1, i.e. the byte is overwritten with FF16. Bit
positions 8 to 15 of the instruction are ignored.

The feature peculiar to the TS instruction is that in the time that passes between testing
the highest-order bit of the byte addressed by the instruction and completion of
overwriting with (FF)16, no other central processing unit and no channel has read or
write access to the byte in question. For this purpose, "serialization" takes place in the
hardware before and after the instruction. During serialization, all outstanding memory
access operations are processed. This mechanism predestines the TS instruction for
synchronization problems in multiprocessor applications.

Condition code

0~Zero Highest-order bit of D2(B2) was =0.
1~Not Zero Highest-order bit of D2(B2) was =1.
2 Not used.
3 Not used.

U3119-J-Z125-2-7600 177

TS General instructions

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read/write access of operand2 illegal.

Programming notes

The TS instruction is less powerful than the CS and CDS instructions, and has been
retained in the instruction set only for reasons of compatibility. For this reason, we refer
to the description of the CS and CDS instructions and Appendix 7.6 for further
information.

178 U3119-J-Z125-2-7600

General instructions UNPK

Unpack

Function

The UNPK instruction turns a (packed) decimal number in the source field into an
unpacked decimal number in the receive field.
The condition code is left unchanged.

Assembler format

Name Operation Operands Remarks

UNPK D1(L1,B1),D2(L2,B2) 1 L1,L2 16

Machine format

UNPK [SS] X’F3’ L1-1 L2-1 B1 D1 B2 D2

0 8 12 16 20 32 36 47

Description

D1(L1,B1) addresses the receive field, and D2(L2,B2) the source field (1 L1,L2 16).
The (packed) decimal number contained in the source field is moved to the receive
field, where it is converted to unpacked (zoned) format.

The source field is not checked to see whether it really does contain a correct, packed
decimal number; instead, it is treated as though it does contain one.

Both operands are processed byte-by-byte from right to left. First, the two halfbytes of
the lowest-order byte in the source field are moved in reverse order to the lowest-order
byte in the receive field. Then each additional halfbyte in the source field is moved to
the right halfbyte of a byte in the receive field, with each left halfbyte ("zone") being set
to F16.

If the source field runs out of space before the receive field (i.e. if 2L2 < L1+1), the
left-most (L1-2L2+1) bytes of the receive field will be padded with (F0)16; if the receive
field is too short to accommodate all halfbytes of the source field (i.e. if L1 < 2L2-1),
the leftmost (2L2-L1-1) halfbytes in the source field will be ignored.

The receive and source fields may overlap. In this case, all subsequent byte operations
will generally overwrite the result of earlier byte operations of the same instruction. The
instruction is executed as though each byte in the receive field is stored the moment
the necessary byte in the source field has been read.

U3119-J-Z125-2-7600 179

UNPK General instructions

Condition code

Stays the same.

Program interrupts

Type Weight Causes

Address trans. error X’48’ Write access of operand1 or
read access of operand2 illegal.

Programming notes

The source field is only changed if it overlaps with the receive field.

Examples

The sample UNPK instructions below yield the following results:

FIELD before Sample instruction FIELD after CC

any UNPK FIELD(1),=PL1’-3’ Z’-3’ unchanged

any UNPK FIELD(5),=PL2’12’ Z’00012’ unchanged

X’89’ UNPK FIELD(1),FIELD(1) X’98’ unchanged

X’23456789’ UNPK FIELD(4),FIELD(4) X’F6F6F798’ unchanged

The third example makes use of the fact that the source field (FIELD) is not checked
for packed format (X’89’ is not a correct, packed decimal number): all that happens is
that the two halfbytes of FIELD change places. However, this permutation only takes
place in the last (in this case only) byte, as is illustrated by example 4. Example 4 also
illustrates a case of overlapping operands in which a subsequent byte operation (in this
case the third) changes the result of an earlier byte operation (in this case the second).
(The point of this example is to illustrate this case, not to recommend it.)

180 U3119-J-Z125-2-7600

General instructions X, XC, XI, XR

EXCLUSIVE OR

Function

The instructions XR, X, XI and XC cause two operands to be exclusively ORed bit-by-
bit.
The condition code is set in accordance with the value of the results.

Assembler formats

Name Operation Operands Remarks

XR R1,R2
X R1,D2(X2,B2) D2(X2,B2): word boundary
XI D1(B1),I2 X’00’ I2 X’FF’
XC D1(L,B1),D2(B2) 1 L 256

Machine formats

XR [RR] X’17’ R1 R2

X [RX] X’57’ R1 X2 B2 D2

XI [SI] X’97’ I2 B1 D1

XC [SS] X’D7’ L-1 B1 D1 B2 D2

0 8 16 20 32 36 47

Description

The bits in the first operand are changed by the opposing bits in the second operand
according to the table below. The result replaces the first operand.

U3119-J-Z125-2-7600 181

X, XC, XI, XR General instructions

Table of EXCLUSIVE OR conjunctions

Bit value Bit value Bit value
in first operand in second operand in result

0 0 0
0 1 1
1 0 1
1 1 0

Operands

Instr. Operand1 Operand2

XR Contents of register R1 Contents of register R2
X Contents of register R1 Word addressed by D2(X2,B2)
XI Byte addressed by D1(B1) Direct operand I2
XC Field addressed by D1(B1) Field addressed by D2(B2)

with length L bytes with length L bytes

Condition code

0~Zero result =0
1~Not Zero result 0
2 Not used.
3 Not used.

Program interrupts

Type Weight Causes

Address trans. error X’48’ X: Read access of operand2 illegal.
XI: Read/write access of operand1

illegal.
XC: Read/write access of operand1 or

read access of operand2 illegal.
Addressing error X’5C’ X: D2(X2,B2) not a word boundary.

182 U3119-J-Z125-2-7600

General instructions X, XC, XI, XR

Programming notes

EXCLUSIVE OR instructions invert all bit position in the first operand for which the
opposing bit position in the second operand has the value 1, and leaves the
remaining bit positions of the first operand unchanged.

The operands are processed byte-by-byte from left to right.

With XC, the operands may overlap. However, among other things, this means that
subsequent byte operations will change earlier ones.

If R1=R2 with the XR instruction, general-purpose register R1 and the condition
code are set to zero.

The XC instruction with operand1=operand2 sets all bytes of operand1 to X’00’.

When using the XI and XC instructions in multiprocessor systems, note the
following:
Memory access operations of the first operand of the XI and XC instructions consist
of reading a byte from memory and then writing the changed value into memory.
These read and write operations on a single byte are not necessarily consecutive, if
another processor or another application (or an input/output channel program)
attempts to modify the memory location in question. A safe way of updating a
shared word in memory is described in Appendix 7.6 and in the programming notes
for the CS and CDS instructions.

Example

Name Operation Operands

.
XC A,B This famous trick switches the
XC B,A main memory fields A and B
XC A,B without an auxiliary field.
.

Incidentally, this pretty algorithm has an exception: when areas A and B overlap (or are
identical), the part they share is padded with binary zeros instead of being left
unchanged.
In the same way (using three XR instructions), it is possible to switch the contents of
two (different) general-purpose registers; it is not possible, however, to switch a word in
main memory with a general-purpose register because there is no X instruction whose
first operand addresses a word in main memory.

U3119-J-Z125-2-7600 183

Decimal instructions Overview

4 Decimal instructions

Overview

Decimal instructions are used for

a) adding, subtraction, multiplying, dividing and comparing two decimal numbers (AP,
SP, MP, DP, CP),

b) moving and/or rounding a decimal numbers (SRP),

c) editing one or more consecutive decimal numbers (ED, EDMK).

The decimal numbers which are processed by decimal instructions are signed base 10
integers with up to 31 digits. With all decimal instructions, the numbers are taken from
or created in main memory. There are no register operands, although some decimal
arithmetic instructions use general-purpose registers for special condition codes.

With all decimal instructions, the length of a decimal number (in bytes) is specified in
the instruction itself, and does not form part of the decimal number. (The assembler [1]
considerably simplifies length computation.)

The decimal numbers processed by decimal instructions are stored in main memory in
one of two formats: packed format or unpacked format. Unpacked (also known in other
contexts as "zoned" format) is the format used following input (e.g. from the keyboard)
or for output (e.g. to printer); packed format is the format used for the arithmetical
handling or comparison of decimal numbers. (In Assembler, decimal numbers can be
defined in either format by using the constant types Z and P; see below.) Both formats
are explained in greater detail below.

U3119-J-Z125-2-7600 185

Overview Decimal instructions

Unpacked format

/
F16 digit F 16 digit ... sign digit

/
Byte: 1 2 L

When decimal numbers are in unpacked (or "zoned") format, each decimal position is
represented in one byte: the ones position in the final Lth byte, the tens position in the
next-to-last (L-1)th byte, the hundreds position in the second-to-last (L-2)th byte, and so
forth.

The numeric value of each decimal position is represented by means of its hexadecimal
equivalent (d10 = d16, d =0, 1, ... 9); in each case it forms the right halfbyte. The left
halfbyte (the "zone") of the first L-1 bytes is a constant F16; the left halfbyte of the final
Lth byte contains the sign.

A positive sign is indicated by the hexadecimal values A16 or C16 or E16 or F16; a
negative sign is indicated by the hexadecimal values B16 or D16.

An unpacked format up to L bytes in length can accommodate one decimal number
with up to L digits; the leftmost bytes contain the value (F0)16 if the decimal number
has fewer than L decimal positions. The maximum length of a decimal number is
unpacked format is 16 bytes, so that up to 16-digit decimal numbers can be
represented in this format.

Examples:

Decimal number Unpacked format

F1 A2
or F1 C2

+12 (2 bytes)
or F1 E2
or F1 F2

B5
-5 (1 byte)

or D5

In Assembler [1], the unpacked format of a decimal number is created with the Z-type
constant, with the hexadecimal values C16 (for plus) and D16 (for minus) being used to
represent the sign: e.g. Z’12’ and Z’+12’ each define two bytes with the contents (F1
C2)16 and Z’-5’ defines one byte with the contents (D5)16. The computation of the length
of a decimal number can be left to the assembler (as in the examples just shown) or it
can be entered explicitly: ZL3’12’ defines 3 bytes with the contents (F0 F1 C2)16. At the
definition stage, the programmer can also add a decimal point, which, however, is not
taken into account in the memory representation or in decimal instructions.

186 U3119-J-Z125-2-7600

Decimal instructions Overview

Packed format

/
digit digit digit digit ... digit sign

/
byte: 1 2 L

When decimal numbers are given in packed format, each decimal position is
represented in a halfbyte. The ones position is stored in the left halfbyte of the final Lth
byte, the tens position in the right halfbyte of the next-to-last (L-1)th byte, the hundreds
position in the same byte but in the left halfbyte, and so forth.

The numeric value of each decimal position is represented by its hexadecimal
equivalent (d10 = d16, d =0, 1, ... 9). The sign of the decimal number is represented in
the right halfbyte of the last (lower-order) byte. A positive sign is determined by the
hexadecimal values A16 or C16 or E16 or F16, and a negative sign by the hexadecimal
values B16 or D16.

A packed format which is L bytes long can accommodate a decimal number of up to
2L-1 digits, where the upper half-bytes contain =016 when the decimal number includes
fewer than 2L-1 significant decimal positions. The maximum length of the packed format
of a decimal number is 16 bytes, so that decimal numbers up to 31 digits long can be
represented in this format. The absolute value range W of packed decimal numbers is
therefore 0 W 1031-1.

U3119-J-Z125-2-7600 187

Overview Decimal instructions

Examples:

Decimal number Packed format

01 2A
or 01 2C

+12 (2 bytes)
or 01 2E
or 01 2F

5B
-5 (1 byte)

or 5D

In Assembler, the packed format of a decimal number is created by the P-type
constant, with the sign being represented by the hexadecimal values C16 (for plus) and
D16 (for minus): e.g. P’12’ or P’+12’ each define two bytes with the contents (01 2C)16
and P’-5’ defines one byte with the contents (5D)16. As with the unpacked format, the
assembler determines the length implicitly whenever an explicit length specification is
omitted.

Table of sign codes

Code Sign

A16 positive
B16 negative
C16 positive
D16 negative
E16 positive
F16 positive

188 U3119-J-Z125-2-7600

Decimal instructions AP

Add Decimal

Function

The AP instruction adds two packed decimal numbers. The sum replaces the first
addend.
The condition code is set in accordance with the value of the sum.

Assembler format

Name Operation Operands Remarks

AP D1(L1,B1),D2(L2,B2) 1 L1,L2 16

Machine format

AP [SS] X’FA’ L1-1 L2-1 B1 D1 B2 D2

0 8 12 16 20 32 36 47

Description

The packed decimal number in the field of the second operand (D2(L2,B2)) is added to
the packed decimal number in the field of the first operand (D1(L1,B1)), with the sign
being taken into account; the packed sum then replaces the first operand. The first
operand and the sum are both L1 bytes long, and the second operand is L2 bytes
long, where 1 L1, L2 16.

Both operands are checked for correct packed format; in case of error, a program
interrupt occurs due to a data error.

A decimal overflow takes place when the sum has more significant decimal positions
than will fit into the field of the first operand; in this case, the instruction terminates
normally, but only the 2L1-1 lowest-order decimal positions are stored and the highest-
order decimal positions are lost. The condition code is set to 3~Overflow. If the bit for
decimal overflow in the program mask is set to 1 (default value in BS2000), a program
interrupt will also occur due to a decimal overflow.

A genuine sum of =0 always has a positive sign (C16); however, a 0 sum which results
from a decimal overflow may also have a negative sign (D16).

U3119-J-Z125-2-7600 189

AP Decimal instructions

Condition code

0~Zero sum = 0 (with sign C16).
1~Minus sum < 0 (with sign D16).
2~Plus sum > 0 (with sign C16).
3~Overflow Sum too large.

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read/write access operand1 or
read access of operand2 illegal.

Data error X’60’ Incorrect format in addend
Decimal overflow X’74’ Sum too large for first operand.

Programming notes

Both operands are processed as integers.

A positive sign in the result is represented by C16, a negative sign by D16.

The two operands may overlap, but in this case the addresses of their lowest-order
bytes must be identical (D1(B1)+L1-1 = D2(B2)+L2-1); otherwise, a program interrupt
will occur due to a data error.

The second operand is only changed if it overlaps with the first operand.

The operands are processed from right to left.

If a decimal overflow occurs, the result has the sign of the correct sum.

190 U3119-J-Z125-2-7600

Decimal instructions AP

Examples

The sample AP instructions shown below yield the following results:

DFIELD before Sample instructions DFIELD after CC

PL1’+1’ AP DFIELD,=PL1’-1’ PL1’+0’ 0

PL1’+1’ AP DFIELD,=PL16’-2’ PL1’-1’ 1

PL1’+1’ AP DFIELD,DFIELD PL1’+2’ 2

PL1’+1’ AP DFIELD,=PL8’-11’ PL1’-0’ 3

Note that the decimal overflow in the fourth example is not caused by the excessive
length of the second operand, but rather because the sum (-10) does not fit into the
first operand. With decimal overflow, it may happen (as in this example) that a resultant
zero is given a negative sign.

U3119-J-Z125-2-7600 191

CP Decimal instructions

Compare Decimal

Function

The CP instruction compares two packed decimal numbers.
The condition code is set in accordance with the comparison results.

Assembler format

Name Operation Operands Remarks

CP D1(L1,B1),D2(L2,B2) 1 L1,L2 16

Machine format

CP [SS] X’F9’ L1-1 L2-1 B1 D1 B2 D2

0 8 12 16 20 32 36 47

Description

The packed decimal number in the field of the first operand (D1(L1,B1)) is compared
with the packed decimal number in the field of the second operand (D2(L2,B2)). The
signs are taken into account, and the condition code is set in accordance with the
comparison result.

Both operands are checked for correct packed format; in case of error, a program
interrupt occurs due to a data error.

Decimal overflow cannot occur.

Condition code

0~Equal operand1 = operand2
1~Low operand1 < operand2
2~High operand1 > operand2
3 Not used.

192 U3119-J-Z125-2-7600

Decimal instructions CP

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read access of operand1 or operand2
illegal.

Data error X’60’ Incorrect format in operand.

Programming notes

Both operands are processed as integers.

Both operands are always left unchanged.

The operands are processed from right to left.

When different sign codes with identical meanings appear in a compare operation
(e.g. C16 and F16), they are always treated in accordance with their meaning.

When negative zero is compared to positive zero, the result is the condition code
0~Equal.

The two operands may overlap, but in this case the addresses of their lowest-order
bytes must be identical (D1(B1)+L1-1=D2(B2)+L2-1); otherwise, a program interrupt
will occur due to a data error.

Examples

The sample CP instructions shown below yield the following results:

CFIELD Sample instructions CC

PL1’+0’ CP CFIELD,=PL16’-0’ 0

PL1’+1’ CP CFIELD,=PL1’2’ 1

PL1’+1’ CP CFIELD,=PL16’-2’ 2

In the first example, a positive zero is compared with a negative zero, which also
happens to be overlength: nevertheless, the comparison results are "equal". Similarly a
comparison of X’1B’ with X’001D’ would set the condition code to 0~Equal.

U3119-J-Z125-2-7600 193

DP Decimal instructions

Divide Decimal

Function

The DP instruction divides two packed decimal numbers. The quotient and the
remainder replace the dividend.
The condition code is left unchanged.

Assembler format

Name Operation Operands Remarks

DP D1(L1,B1),D2(L2,B2) L2 < L1 16 and
* 1 L2 min(8, L1-1)

Machine format

DP [SS] X’FD’ L1-1 L2-1 B1 D1 B2 D2

0 8 12 16 20 32 36 47

Description

The DP instruction performs signed division of the dividend (D1(L1,B1)) by the divisor
(D2(L2,B2)), and creates the (integer part of the) quotient as well as the division
remainder as packed decimal numbers in the field of the dividend.

The length of the dividend (L1) must be greater than that of the divisor (L2), otherwise
a program interrupt will occur due to an addressing error (L2 < L1 16). At least the
first decimal position in the dividend must be =016, otherwise a program interrupt will
occur due to a division error.

The length of the divisor (L2) must be less than that of the dividend (L1), and must not
be greater than 8 bytes, otherwise a program interrupt will occur due to an addressing
error. The divisor can therefore include a maximum of 15 decimal positions (L2 Min
(L1-1,8)).

The resultant quotient is L1-L2 bytes long, and is stored as a packed decimal number
(integer) in the leftmost L1-L2 bytes of the field of the dividend; the resultant remainder
is L2 bytes long, and is stored in the rightmost L2 bytes of the field of the dividend.
The quotient and the remainder thus completely replace the dividend.

Both operands must represent valid packed decimal numbers, otherwise a program
interrupt will occur due to a data error.

194 U3119-J-Z125-2-7600

Decimal instructions DP

The sign of the quotient is formed according to the usual algebraic rules, even if the
dividend is =0; the division remainder always has the sign of the dividend, even if the
remainder is =0. A positive sign is represented as C16, a negative sign as D16.

If the divisor is =0 or the quotient is longer than L1-L2 bytes, a program interrupt will
occur due to a data error (i.e. not due to a decimal overflow). This also applies to the
case where both the dividend and the divisor are =0. In the case of division error, both
the initial operands are left unchanged.

Condition code

Stays the same.

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read/write access of operand1 and
read access of operand2 illegal.

Addressing error X’5C L1 or L2 incorrect.
Data error X’60’ Incorrect format in operand.
Division error X’68’ Divisor =0 or quotient too large.

Programming notes

All operands (dividend, divisor, quotient and remainder) are interpreted as integers.

The quotient can be at most 15 bytes long, i.e. it can include a maximum of 29
decimal positions.

Dividend and divisor may overlap, but in this case the addresses of their lowest-
order bytes must be identical (D1(B1)+L1-1=D2(B2)+L2-1), otherwise a program
interrupt will occur due to a data error. Moreover, L1 must be greater than L2, i.e.
D1(B1) D2(B2).

The dividend must have at least one leading halfbyte with the value 016. This is a
necessary but not sufficient condition for preventing a division error.

The following instruction sequence is equivalent to a division error check running
within DP:

U3119-J-Z125-2-7600 195

DP Decimal instructions

Name Operation Operands

MVO TEMP(L’DIVISOR+1),DIVISOR
CLC TEMP(L’DIVISOR),DIVIDEND
BNH DIVERROR

This instruction sequence may be executed prior to a DP instruction to ensure that
no program interrupt due to a division error will occur. It requires a temporary field
TEMP which is (L’DIVISOR + 1) long.

Examples

Following execution of

Name Operation Operands

.
DP DFIELD,DIVISOR
.

the examples below yield the following results:

DFIELD before DIVISOR DFIELD after
Dividend Divisor Quotient Remainder

PL5’1001’ PL2’10’ PL3’+100’ PL2’+1’
PL5’1001’ PL2’-10’ PL3’-100’ PL2’+1’
PL5’-1001’ PL2’-10’ PL3’+100’ PL2’-1’
PL5’1000’ PL2’-10’ PL3’-100’ PL2’+0’
PL3’-1000’ P’1’ unchanged, dividend error
PL8’-1000’ PL8’10’ unchanged, addressing error

In the next-to-last example a division error occurs because the quotient (P’-1000’)
requires 3 bytes for storage purpose but only 2 bytes are available; the third byte is
reserved for the remainder.

In the final example, an addressing error occurs because the condition L2=8
Min(L1-1,8)=Min(7,8)=7 is not satisfied.

196 U3119-J-Z125-2-7600

Decimal instructions ED, EDMK

Edit

Function

The instructions ED (Edit) and EDMK (Edit and Mark) edit one or more packed decimal
numbers into printable form. The EDMK instruction also enters the address of the most
significant decimal position into general-purpose register 1.
The condition code is set in accordance with the most recently edited decimal number.

Assembler formats

Name Operation Operands Remarks

ED D1(L,B1),D2(B2) 1 L 256
EDMK D1(L,B1),D2(B2) 1 L 256

Machine formats

ED [SS] X’DE’ L-1 B1 D1 B2 D2

EDMK [SS] X’DF’ L-1 B1 D1 B2 D2

0 8 16 20 32 36 47

Description

The instructions ED and EDMK edit one or more consecutive packed decimal numbers
into printable form. The editing takes place with the aid of masks.

The EDMK instruction does the same as the ED instruction except that it also "marks"
the most significant decimal position in the receive field by entering its address in
general-purpose register 1.

Operand1 (addressed by D1(B1)) has two purposes: before the instruction is executed
it contains the editing mask, and following execution it contains the edited result.
Depending on the purpose served, operand1 is therefore referred to either as "mask" or
as "receive field". Any character may be included in the mask, but three characters
have special meaning as control characters. These are the codes X’20’ (digit selector),
X’21’ (significance starter) and X’22’ (field separator).

Operand2 (addressed by D2(B2)) is the "source field". It must contain one or more
consecutive packed decimal numbers.

If the two operands overlap, the results will be unpredictable.

U3119-J-Z125-2-7600 197

ED, EDMK Decimal instructions

Both operands are processed from left to right. The mask (and the receive field) are
processed byte-by-byte, the source field halfbyte-by-halfbyte.

Every character in the mask is replaced during instruction execution either by an
unpacked decimal digit of the source field or by the filler character (see below), or it is
left unchanged. Which of these options is actually taken depends on

the mask character,

the switch setting of the significance indicator,

the value of the decimal digit lying opposite the mask character in the source field
(=0 or 0).

Mask character

There are four kinds of mask character:

Mask character Coding

Digit selector X’20’
Significance starter X’21’
Field separator X’22’
Text character any other

The occurrence of a digit selector or a significance starter in the mask causes the next
decimal digit in the source field to be read. Depending on its value and on the setting
of the significance indicator, the character entered in the receive field in place of the
mask character is either this decimal digit (unpacked and supplied with zone F16) or the
filler character.

The field separator indicates the beginning of a new decimal number in the source field,
whenever an ED or EDMK instruction is to edit two or more decimal numbers. The field
separator is always replaced by the filler character, and causes the significance
indicator to be set to "off".

All text characters in the mask either remain unchanged or are replaced by the filler
character, depending on whether the significance indicator is set to "on" or "off".

198 U3119-J-Z125-2-7600

Decimal instructions ED, EDMK

Filler character

The first character in the mask, i.e. the byte at the address D1(B1), is used as a filler
character. Any character may be selected as a filler character, even the digit selector,
the significance starter or the field separator.

The filler character is entered in the receive field depending on the significance
indicator setting, the mask character and the value of the opposing digit in the source
field. For further details, consult the tabular summary below.

The filler character is buffered at the start of instruction execution, and remains
available from the buffer for the entire time that the instruction is being executed, even
if it itself is replaced in the receive field. Only after the filler character has been buffered
does interpretation of the mask character begin, starting with the filler character itself.

The filler character itself is only replaced if it is a digit selector or significance starter,
and if it lies opposite a decimal digit 0.

Source field digits

Each time a digit selector or significance starter is encountered in the mask, the next
decimal digit in the source field is read and the significance indicator is checked. This
determines whether the decimal digits are stored in the right halfbyte of the receive field
and the zone F16 is entered in the left halfbyte, or whether the decimal digits are
skipped and the filler character is stored in the receive field.

The source field is processed one halfbyte at a time, from left to right. All left halfbytes
must contain decimal digits, i.e. hexadecimal digits 916; otherwise, a program interrupt
will occur due to a data error. Each time a left halfbyte is read, the right halfbyte is
checked to see whether it is a sign, i.e. contains a hexadecimal digit A16. If so, the
system makes sure (after switching the significance indicator, if necessary) that with the
next digit selector or significance starter the next adjoining left halfbyte is read;
otherwise, the right halfbyte remains available for this purpose.

Significance indicator

The significance indicator is an internal toggle switch. When it is switched to the "on"
position, "significance" applies: i.e. digit selectors and significance starters in the mask
are replaced by their opposing decimal digits and text characters are left unchanged. If
the significance indicator is switched to the "off" position, "nonsignificance" applies: i.e.
digit selectors, significance starters and text characters are replaced by the filler
character.

U3119-J-Z125-2-7600 199

ED, EDMK Decimal instructions

The position of the significance indicator also indicates whether the decimal number to
be edited contains a minus sign or a plus sign. It thus determines, among other things,
the condition code of the ED and EDMK instructions.

The significance indicator is switched to the "off" position

at the start of instruction execution or

when a field separator is encountered or

when a decimal digit in a left halfbyte of the source field is followed by a plus sign
(A16, C16, E16 or F16) in the associated right halfbyte.

The significance indicator is switched "on" whenever it is in the "off" position and

a significance starter lies opposite a source field digit which is not followed by a
plus sign or

a digit selector lies opposite a source field digit which is 0 and is not followed by
a plus sign.

In all other cases the significance indicator is left unchanged (for further information see
the tabular summary below).

Receive field characters

The editing results of the ED and EDMK instructions are stored in the receive field and
replace the mask: they have the length of the mask (L bytes), and consist of text
characters, filler characters and zoned source field digits.

A text character in the mask either remains unchanged or it is replaced by the filler
character, depending on whether the significance indicator is in the "on" or "off" position
when the text character occurs.

A digit selector or significance starter in the mask is replaced by the filler character
when the significance indicator is in the "off" position and the opposing source field
digit is =0. In contrast, a digit selector or significance starter in the mask is replaced by
the opposing zoned source field digit when this digit is 0 or the significance indicator
is in the "on" position.

200 U3119-J-Z125-2-7600

Decimal instructions ED, EDMK

Summary

The table below summarizes the functions of the individual mask characters. The
leftmost 4 columns show the 4 possible condition constellations; the rightmost 2
columns show the associated result characters in the receive field and the setting of the
significance indicator.

Effect of ED and EDMK mask characters

Conditions Result

Mask Significance Source followed by Receive Significance
charac- indicator field plus sign ? field indicator
ter before digit character after

off 0 irrelevant filler ch off
Digit off 1...9 no SF digit on
selector off 1...9 yes SF digit off
(X’20’) on 0...9 no SF digit on

on 0...9 yes SF digit off

off 0 no filler ch on
Signifi- off 0 yes filler ch off
cance off 1...9 no SF digit on
starter off 1...9 yes SF digit off
(X’21’) on 0...9 no SF digit on

on 0...9 yes SF digit off

Field
separator irrelevant irrelevant irrelevant filler off
(X’22’) character

Text off irrelevant irrelevant filler off
character character
(any on irrelevant irrelevant text on
other) character

Condition code

0~Zero All processed digits in the most recently edited decimal number were
=016 or neither a significance starter nor a digit selector occurred in the
mask for the most recently edited decimal number, or the last character in
the mask was a field separator.

1~Minus The most recently edited decimal number was non-zero and the
significance indicator was most recently in the "on" position.

2~Plus The most recently edited decimal number was non-zero and the
significance indicator was most recently in the "off" position.

3 Not used.

U3119-J-Z125-2-7600 201

ED, EDMK Decimal instructions

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read/write access of operand1 or
read access of operand2 illegal.

Data error X’60’ A left halfbyte in the source field
does not contain a decimal digit.

Additional marking with EDMK

The EDMK instruction is identical to the ED instruction with regard to the execution
described above and to its result as well as the resulting condition code. However,
EDMK also stores, in general-purpose register 1, the highest-order non-zero decimal
digit in the receive field, provided the significance indicator was previously set to "on"
during the store operation. When two or more decimal numbers are edited with an
EDMK instruction, this applies to the final decimal number for which significance has
been switched on in this way. If significance is not switched on at all, or is switched on
using the significance starter, general-purpose register 1 is left unchanged.

In 24-bit addressing mode, the address is entered in bit positions 8 to 31 of general-
purpose register 1; in 31-bit addressing mode it is entered in positions 1 to 31. Bit
positions 0 to 7 (24-bit mode) or bit position 0 (31-bit mode) are left unchanged.

Programming notes

The ED and EDMK instructions are provided for those cases where edited decimal
numbers are to be given additional characters such as thousands commas or
currency signs, or where leading zeros are to be replaced by filler characters, e.g.
by blanks or "protective asterisks" (see examples).

The EDMK instruction simplifies the insertion of a sign immediately in front of the
highest-order non-zero decimal digit of the final edited decimal number. If a
significance starter was used in the mask to edit this number, it is advisable, before
calling EDMK, to load its address into general-purpose register 1, having previously
incremented it by 1. Then general-purpose register 1 will contain the address of the
highest-value zoned decimal digit, whether significance was switched on by the
significance starter or by the highest-order non-zero decimal digit. Hence, when
reduced by 1, register 1 will point to the position of the floating sign (for further
information see also example 3).

With certain data constellations, the EDMK instruction changes general purpose
register 1 even though it is not specified in the instruction.

202 U3119-J-Z125-2-7600

Decimal instructions ED, EDMK

EDMK does not always change general-purpose register 1, and even when it does
change the register it does not fully replace it. It is therefore advisable in all cases
(not just in the above case) to set register 1 to a meaningful value before issuing
EDMK.

Examples

Name Operation Operands

MVC DFIELD1,MASKE
Example1 ED DFIELD1,=P’123456789’
* DFIELD1 after: 1’234.567,89
* CC: 2~Plus
MASKE DC C’ ’ Filler character

DC X’20’ Digit selector
DC C’’’’ Apostrophe
DC 3X’20’ 3 digit selectors
DC C’.’ Point
DC X’202120’ Digit selector,
DC X’202120’ significance starter,

* digit selector
DC C’,’ Comma
DC 2X’20’ 2 digit selectors
.

Example2 ED DFIELD2(11),SFIELD
* DFIELD2 after: ***1002***3
* CC: 1~Minus
DFIELD2 DC C’*’ Filler character

DC 2X’202120’ First 2 masks
DC X’22’ Field separator
DC X’202120’ Third mask

SFIELD DC PL2’-1,-2,-3’ 3 numbers to be edited
.

Example3 MVC DFIELD3(7),=X’402021206B2020’
* X’40’=blank, X’6B’=point

LA 1,DFIELD3+3 Register 1 to
* Significance starter +1

EDMK DFIELD3(7),ACCOUNT ACCOUNT = 3 bytes long
BE READY Packed decimal number
BCTR 1,0
MVI 0(1),’+’
BH READY
MVI 0(1),’-’

READY EQU *

If, in example 1, PL5’-1’ is specified instead of P’123456789’ as the number to be edited,
this would produce the character string 0,01.

Example 2 illustrates the effect of a minus sign and field separator on the significance
indicator. If the first decimal number to be edited is PL2’-1’ instead of PL2’+1’, the
character string ***1**2***3 will be produced in FIELD2 since in this case the
significance indicator is switched on by the plus sign.

U3119-J-Z125-2-7600 203

ED, EDMK Decimal instructions

Example 3 illustrates an instruction sequence for editing a monetary amount which is to
be preceding by a "+" sign, a "-" sign or by no sign, depending on whether it is less
than, greater than, or equal to 0. Thus, for example, the ACCOUNT value PL3’-.12’ is to
be edited to -0,12 and the value PL3’0’ 0,00. Prior to EDMK, the instruction
sequence loads general-purpose register 1 "as a precaution" with the address of the
character that follows the significance starter (X’21’) in the mask. If the first non-zero in
ACCOUNT is located to the right of the significance starter, register 1 is left unchanged
by EDMK; otherwise, EDMK enters its address in register 1. In both cases, following
EDMK register 1 contains the address of the first zoned digit, and hence the contents
of register 1 decremented by 1 via BCTR 1,0, point to the decimal position where the
"floating" plus sign or minus sign (or no sign in the case of 0) belongs.

204 U3119-J-Z125-2-7600

Decimal instructions MP

Multiply Decimal

Function

The MP instruction performs signed multiplication of two packed decimal numbers. The
product replaces the first operand.
The condition code is left unchanged.

Assembler format

Name Operation Operands Remarks

MP D1(L1,B1),D2(L2,B2) L2 < L1 16 and
* 1 < L2 min(8, L1-1)

Machine format

MP [SS] X’FC’ L1-1 L2-1 B1 D1 B2 D2

0 8 12 16 20 32 36 47

Description

The packed multiplier is multiplied by the packed multiplicand, with the sign being
taken into account. The packed product replaces the multiplicand.

The multiplicand and the product are addressed in main memory by D1(B1), the
multiplier by D2(B2). The length of the multiplier (L2) must be at least 1 and no more
than 8 bytes; it must also be less than the length of the multiplicand
(1 L2 Min(L1-1,8)). The length of the multiplicand (L1) must be greater than the length
of the multiplier (L2<L1 16). If these conditions are not satisfied, a program interrupt
will occur due to an addressing error.

The multiplicand must contain at least as many leading bytes with the contents 0016 as
the length of the multiplier; otherwise, a program interrupt will occur due to a data
error. A program interrupt will also occur when one or both operands do not represent
correctly packed decimal numbers.

The sign of the product is determined according to the algebraic rules, even if one or
both of the operands are =0.

A decimal overflow cannot occur.

U3119-J-Z125-2-7600 205

MP Decimal instructions

Condition code

Stays the same.

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read/write access of operand1 or
read access of operand2 illegal.

Addressing error X’5C’ L1 or L2 wrong.
Data error X’60’ 1. Incorrect format in operand.

2. Multiplicand does not have at least
L2 leading zero bytes.

Programming notes

Both operands are processed as integers; the product is in integer.

In the product, a positive sign is represented by C16, and a negative sign by D16.

The multiplicand and multiplier may overlap, but in this case the addresses of their
lowest-order bytes must be identical (D1(B1)+L1-1= D2(B2)+L2-1); otherwise, a
program interrupt will occur due to a data error. Furthermore, L1 must be greater
than L2, i.e. D1(B1)<D2(B2), and the uppermost L2 bytes in the multiplicand must
be =0016 (see example).

A product of =0 may have a negative sign.

The result of an MP instruction can be at least one leading zero (016).

The result of an MP instruction can be at most 1030-2*1015+1, i.e. it can have at
most 29 digits.

206 U3119-J-Z125-2-7600

Decimal instructions MP

Examples

The sample MP instructions below yield the following results:

DFIELD before Sample instruction DFIELD after

PL2’-9’ MP DFIELD,=P’2’ PL2’-18’

PL2’-9’ MP DFIELD,=P’0’ PL2’-0’

PL2’-9’ MP DFIELD,DFIELD+1(1) PL2’+81’

Note that the instruction MP DFIELD,DFIELD would be incorrect when used instead of
example 3, since it does not satisfy the initial condition L2<L1.

U3119-J-Z125-2-7600 207

SP Decimal instructions

Subtract Decimal

Function

The SP instruction subtracts two packed decimal numbers. The resulting difference
replaces the first operand.
The condition code is set in accordance with the value of the difference.

Assembler format

Name Operation Operands Remarks

SP D1(L1,B1),D2(L2,B2) 1 L1,L2 16

Machine format

SP [SS] X’FB’ L1-1 L2-1 B1 D1 B2 D2

0 8 12 16 20 32 36 47

Description

The packed decimal number in the field of the second operand (D2(L2,B2)) is
subtracted from the packed decimal number in the field of the first operand
(D1(L1,B1)), with the sign being taken into account. The packed difference replaces the
first operand.

The first operand and the difference have a length of L1 bytes; the second operand has
a length of L2 bytes, where 1 L1,L2 16.

Both operands are checked for a correct packed format; in case of error, a program
interrupt will occur due to a data error.

A decimal overflow will occur if the result has more significant decimal positions than
will fit into the field of the first operand. The instruction is terminated normally, but only
the lowest-order 2L1-1 decimal positions in the difference are stored and the highest-
order decimal positions are lost; the condition code is then set to 3~Overflow. If the bit
for decimal overflow is set to 1 in the program mask (default value in BS2000), a
program interrupt will also occur.

A genuine difference of =0 always has a positive sign (C16). However, a difference of
=0 resulting from a decimal overflow can also have a negative sign (D16).

208 U3119-J-Z125-2-7600

Decimal instructions SP

Condition code

0~Zero The difference is =0 (it has the sign C16).
1~Minus The difference is <0 (it has the sign D16).
2~Plus The difference is >0 (it has the sign C16).
3~Overflow The difference is more significant decimal positions than will fit into the

field of the first operand.

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read/write access of operand1 or
read access of operand2 illegal.

Data error X’60’ Operand has incorrect format.
Decimal overflow X’74’ Difference too large for first operand.

Programming notes

Both operands are processed as integers.

The operands are processed from right to left.

The operands may overlap, but in this case the addresses of their lowest-order
bytes must be identical (D1(B1)+L1-1 = D2(B2)+L2-1); otherwise, a program interrupt
will occur due to a data error.

The second operand is only changed if it overlaps with the first operand.

If a decimal overflow occurs, the result has the sign of the correct difference. For
this reason, it may happen with decimal overflow that a result of =0 has a negative
sign.

U3119-J-Z125-2-7600 209

SP Decimal instructions

Examples

The sample SP instructions below yield the following results:

DFIELD before Sample instruction DFIELD after CC

PL1’-2’ SP DFIELD,=P’-10’ PL1’+8’ 2

PL1’-2’ SP DFIELD,=PL16’-2’ PL1’+0’ 0

PL1’-2’ SP DFIELD,=P’-13’ PL1’+1’ 3

PL1’-2’ SP DFIELD,DFIELD PL1’+0’ 0

Note that the second operand may well be longer than the first (see first three
examples). Decimal overflow will not occur unless the result of the SP instruction is too
long to be stored in the first operand.

210 U3119-J-Z125-2-7600

Decimal instructions SRP

Shift and Round Decimal

Function

The SRP instruction shifts a packed decimal number a specified number of decimal
positions to the left or right; when shifted to the right, a decimal number will then be
rounded in accordance with a specified rounding digit.
The condition code is set in accordance with the value of the result.

Assembler formats

Name Operation Operands Remarks

SRP D1(L1,B1),D2(B2),I3 0 I3 9
* or also:

SRP D1(L1,B1),64-r,rz 1 r 32; 0 rz 9
SRP D1(L1,B1),l,rz 0 l 31; 0 rz 9

Where:

r the number of decimal positions to be shifted to the right

rz the rounding digit (9) and

l the number of decimal positions to be shifted to the left.

With shift left, the direct operand I3 likewise must be specified in the Assembler format,
even though it is ignored when the instruction is executed.

Machine format

SRP [SS] X’F0’ L1-1 I3 B1 D1 B2 D2

0 8 12 16 20 32 36 47

Description

The first operand (addressed by D1(L1,B1)) must be a packed decimal number with a
length of L1 bytes (1 L1 16). This decimal number is shifted in the direction and
by the number of decimal positions indicated by the address D2(B2). The direct
operand I3 must be a decimal digit, i.e. 9; it is used as a rounding digit for final
rounding following a shift right.

The address determined by D2(B2) is not used as a data address; instead, the
rightmost 6 binary positions of this address (bits 26-31) form the shift information: if the
highest-order bit in this binary number is =0 (i.e. if bit 26 =0), the shift will take place
to the left, namely, by the number of decimal positions specified by the binary number.

U3119-J-Z125-2-7600 211

SRP Decimal instructions

Otherwise, if the highest-order bit in the binary number is =1, the shift will take place to
the right, namely, by the number of decimal positions specified by the twos
complement of the binary number.

With both shift left and shift right the sign position of the first operand remains
unchanged. Any digit positions freed will be padded with 016; this takes place from the
right with shift left, and from the left with shift right.

If a significant decimal digit is lost due to a shift left, a decimal overflow occurs. The
condition code is then set to 3~Overflow and a program interrupt occurs, provided the
bit for decimal overflow is set to =1 in the program mask (default value in BS2000).

Rounding:

After a shift right, the shifted decimal number is then rounded. This is done by adding
the most recently shifted decimal digit to the direct operand I3 (rounding digit) and
adding any overflow one to the shifted decimal number in accordance with its sign.

The first operand is checked for a correct format. The value of I3 must be a correct
decimal number, i.e. 9, even if the shift is to the left. If an error is detected, a
program interrupt will occur due to a data error.

Condition code

0~Zero Result is = 0 (+0 or -0).
1~Minus Result is < 0.
2~Plus Result is > 0.
3~Overflow decimal overflow.

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read/write access of operand1 illegal.
Data error X’60’ 1. First operand has incorrect format.

2. Rounding digit (I3) not 9
Decimal overflow X’74’ Loss of significant decimal digits

212 U3119-J-Z125-2-7600

Decimal instructions SRP

Programming notes

The shift information (direction and number) is obtained from the 6 lowest-order bits
of the address D2(B2). These 6 bits form a binary number b in the value range
0 b 63. If b 31 the shift takes place b decimal positions to the left; if 32 b 63,
the shift takes place 64-b decimal places to the right.

This yields the following limit values:

6 lowest-order Binary number Direction Number of
bits of D2(B2) b of shift positions

000000 0 no shift
000001 1 left 1 decimal pos.
011111 31 left 31 decimal pos.
100000 32 right 32 decimal pos.
111111 63 right 1 decimal pos.

If B2=0, the shift information is obtained entirely from the 6 lowestorder bits of the
D2 field. In this case, "(B2)" may be omitted from the Assembler format.

If rounding occurs, positive numbers are rounded up and negative numbers are
rounded down.

Standard commercial rounding is obtained by entering the rounding digit 5.

A pure shift right is obtained by entering a rounding digit 0.

The maximum value 32 for shift right is sufficient to "zero" the longest possible
decimal number (31 would also be sufficient).

With shift left, too, a third operand I3 must be specified in the Assembler format and
must be 916 even though it is ignored when the instruction is executed.

A packed decimal number GZAHL can be multiplied with a variable power of ten
10x+k by entering the variable "x" in general-purpose register B1 and the constant "k"
in the D1 field of an SRP. For example, this can be done as follows:

Name Operation Operands

LH 6,=H’x’
SRP GZAHL,k(6),0

The special feature of this technique is that it also works if "x+k" is negative, i.e.
when dividing by 10-(x+k).

U3119-J-Z125-2-7600 213

SRP Decimal instructions

Examples

The sample SRP instructions below yield the following results:

DFIELD before Sample instruction DFIELD after CC

PL2’995’ SRP DFIELD,64-1,5 PL2’100’ 2

PL2’994’ SRP DFIELD,64-1,5 PL2’99’ 2

PL2’-995 SRP DFIELD,64-1,5 PL2’-100’ 1

PL2’-1’ SRP DFIELD,3,0 PL2’-0’ 3

PL2’-1’ SRP DFIELD,1,0 PL2’-10’ 1

PL2’-1’ SRP DFIELD,64-1,9 PL2’-1’ 1

214 U3119-J-Z125-2-7600

Decimal instructions ZAP

Zero and Add

Function

The ZAP instruction moves a packed decimal number to a specified storage area in
main memory. The instruction is equivalent to the AP instruction when its first operand
is =0.
The condition code is set in accordance with the value of the moved decimal number.

Assembler format

Name Operation Operands Remarks

ZAP D1(L1,B1),D2(L2,B2) 1 L1,L2 16

Machine format

ZAP [SS] X’F8’ L1-1 L2-1 B1 D1 B2 D2

0 8 12 16 20 32 36 47

Description

D1(L1,B1) addresses the receive field, and D2(L2,B2) the source field (1 L1,L2 16).

Only the source field is checked for a correct packed format. If an error is detected, a
program interrupt occurs due to a data error.

A decimal overflow occurs when the source field has more significant decimal positions
than will fit into the receive field. In this case, the instruction is terminated normally, but
only the lowest-order 2L1-1 decimal positions of the source field are moved and the
highest-order decimal positions are lost. The condition code is set to 3~Overflow. If the
bit for decimal overflow is set to 1 in the program mask (default value in BS2000), a
program interrupt will then occur as well.

Once the instruction has been executed, a genuine zero in the source field will always
have a positive sign (C16); however, a result of =0 caused by a decimal overflow may
also have a negative sign.

U3119-J-Z125-2-7600 215

ZAP Decimal instructions

Condition code

0~Zero Receive field = 0 (sign C16).
1~Minus Receive field < 0 (sign D16).
2~Plus Receive field > 0 (sign C16).
3~Overflow Source field has more significant decimal positions than will fit into the

receive field.

Program interrupts

Type Weight Causes

Address trans. error X’48’ Write access of operand1 or
read access of operand2 illegal.

Data error X’60’ Source field has incorrect format.
Decimal overflow X’74’ Second operand too large.

Programming notes

The source field is only changed if it overlaps with the receive field.

The move operation takes place from right to left.

The two operands may overlap. However, a correct result can only be expected if
the lowest-order byte in the source field does not lie to the right of the lowest-order
byte in the receive field, i.e. if D1(B1)+L1-1 D2(B2)+L2-1.

The sign of the receive field is set to =C16 or =D16 even if it is coded differently in
the source field.

216 U3119-J-Z125-2-7600

Decimal instructions ZAP

Examples

The sample ZAP instructions below yield the following results:

FIELD before Sample instruction FIELD after CC

any ZAP FIELD(1),=PL1’-1’ PL1’-1’ 1

any ZAP FIELD(1),=PL16’0’ PL1’+0’ 0

any ZAP FIELD(1),=PL8’-10’ PL1’-0’ 3

Note that the decimal overflow in the third example did not occur because the second
operand is longer than the first, but because its value -10 will not fit in the first operand.
With decimal overflow, it may happen (as in this case) that a resultant zero is given a
negative sign.

U3119-J-Z125-2-7600 217

Floating-point instructions Overview

5 Floating-point instructions

Overview

The floating-point instructions are used for processing numbers with large value ranges.

There are floating-point instructions for loading, addition, subtraction, multiplication,
division, comparison and sign handling. The instructions process floating-point numbers
in three different formats: short, long and extended format.

Most floating-point instructions process two floating-point numbers. Either both of these
numbers are located in floating-point registers, or one of them is in main memory and
the other in a floating-point register.

Most floating-point instructions create normalized results which represent the highest
possible precision; for addition and subtraction, however, there are also instructions
which yield unnormalized results, since this can be desirable in many applications (e.g.
for subtotals).

Floating-point numbers (sign, characteristic, mantissa)

Each floating-point numbers consist of the sign, the characteristic, and the mantissa.

The sign is a 1-bit number. A zero stands for a positive sign, and a 1 for a negative
sign.

The characteristic is an unsigned 7-bit number that represents a base 16 exponent. The
exponent itself is obtained by subtracting 64 from the characteristic. The value range of
the characteristic extends from 0 to 127, that of the exponent from -64 to +63.

The mantissa is a hexadecimal fraction consisting of 6, 14 or 28 hexadecimal digits,
depending on the format used (see below). The (implicit) hexadecimal point of this
fraction is located to the left of the highest-order hexadecimal digit.

The value of a floating-point number is obtained from the sign and the product of the
mantissa and 16 raised to the power of the exponent:

Value of a floating-point number = (-1)Sign*mantissa*16exponent

= (-1)Sign*mantissa*16characteristic-64

U3119-J-Z125-2-7600 219

Overview Floating-point instructions

Exponent overflow and underflow

If the resultant exponent in a floating-point operation is less than -64 (i.e. the
characteristic is less than 0), an exponent underflow occurs. The operation is carried
out to the end. If the bit for exponent underflow is set to 1 in the program mask
(default value BS2000), a program interrupt then takes place; the mantissa and the sign
will be correct, but the characteristic of the result will be 128 too large. If, however,
exponent underflow takes place and the associated bit in the program mask is =0, no
program interrupt will take place; instead, a so-called genuine zero will be created as a
result.

If the resultant exponent in a floating-point operation is greater than 63 (i.e. the
characteristic is greater than 127), an exponent overflow occurs. The operation is
carried out to the end and a program interrupt takes place. (This program interrupt will
always take place since there is no bit for exponent overflow in the mask.) The
characteristic of the result will be 128 too small. The mantissa and the sign, however,
will be correct.

Handling the zero, significance

If the mantissa of an addition, subtraction, multiplication or division operation is =0, the
sign will always be set to positive; with other operations, however, the sign of a =0
mantissa depends on the sign of the initial operand or operands (the same applies to
results with a non-zero mantissa).

If a floating-point addition or subtraction operation produces as a subtotal a mantissa
consisting entirely of =016 in its hexadecimal positions, significance occurs. The
instruction is carried out to the end. If the bit for significance is set to =1 in the
program mask, a program interrupt will occur, with the characteristic being correct but
the sign and the mantissa being set to =0. If, however, significance occurs and the
associated bit is =0, a genuine zero is created and no program interrupt takes place.

A genuine zero is a floating-point number whose sign, characteristic and mantissa are
all =0. A genuine zero may arise as a normal arithmetic result if the operands have the
appropriate values, but it can also be created explicitly, namely in the following cases:

1. Exponent underflow has occurred and the corresponding bit in the program mask is
=0.

2. An addition or subtraction operation has resulted in a mantissa of =0 and the mask
bit for significance is =0.

3. The operand of a halve instruction, or one or both operands of a multiplication
instruction, or the dividend of a division instruction has a mantissa of =0.

220 U3119-J-Z125-2-7600

Floating-point instructions Overview

Normalization

An amount can be represented with greatest precision by using a floating-point number
that is "normalized". A normalized floating-point number is one whose highest-order
mantissa position is not equal to 016. If the highest-order hexadecimal digit in the
mantissa is =016, the floating-point number is referred to as unnormalized.

Unnormalized floating-point numbers are normalized by shifting the mantissa to the left
by the number of leading hexadecimal zeros, and reducing the characteristic by this
same number.

A floating-point number whose mantissa is =0 cannot be normalized; its characteristic
is either set to =0 or it is left unchanged, depending on whether the floating-point
operation determines that a genuine zero should or should not be created in this case.

The extended addition and subtraction instructions with floating-point operands, as well
as all multiplication, division and halving instructions, normalize their results
automatically. Floating-point addition and subtraction in short or long format can be
activated both with normalized and with unnormalized results. None of the other
instructions normalizes its results.

In instructions which do not perform normalization, leading hexadecimal zeros are not
eliminated. The result may be either normalized or unnormalized, depending on the
initial operands involved.

With all floating-point instructions, the initial operands may be either normalized or
unnormalized. In the case of multiplication and division instructions, the operands are
normalized prior to the actual multiplication or division; other instructions that perform
normalization do so only after producing the final result.

If the mantissa overflows when forming the subtotal of an addition, subtraction or
rounding operating, it is shifted one hexadecimal position to the right; a one (116) is
entered in the freed hexadecimal position and the characteristic is increased by one.
These steps also take place with those instructions which otherwise do not perform
normalization.

Floating-point formats

There are three formats of floating-point numbers: "short", "long" and "extended". Short
format refers to floating-point numbers which are 32 bits long (i.e. one "word"); long
format refers to 64-bit floating-point numbers (one "doubleword") and extended format
to 128 bit floating-point numbers (two "doublewords"). Floating-point numbers in short
or long format may be addressed both in main memory and in floating-point registers;
extended floating-point numbers, however, can only be addressed in floating-point
registers - or, more precisely, in floating-point register pairs.

U3119-J-Z125-2-7600 221

Overview Floating-point instructions

Short format:

S characteristic mantissa of 6 hexadecimal digits

0 1 8 31

Long format:

S characteristic mantissa of 14 hexadecimal digits

0 1 8 63

Extended format, upper portion:

S characteristic highest-order 14 hexadecimal digits in
mantissa of 28 hexadecimal digits

0 1 8 63

Extended format, lower portion:

S characteristic lowest-order 14 hexadecimal digits in
mantissa of 28 hexadecimal digits

64 65 72 127

In all three formats, bit 0 forms the sign (S). The next 7 bits (bits 1 to 7) represent the
characteristic. With short and long format, the next 24 or 56 bits (bits 8 to 31 or bits 8
to 63) form the mantissa, which consists either of 6 or 14 hexadecimal digits.

A floating-point number in extended format is represented by two floating-point
numbers in long format. These are referred to as the "upper portion" and the "lower
portion" of the extended floating-point number.

The upper portion of an extended floating-point number may be any floating-point
number in long format; its sign and characteristic determine the sign and characteristic
of the entire floating-point number. Its mantissa determines the 14 highest-order
hexadecimal digits of the 28 hexadecimal digits in the mantissa of the extended
floating-point number. If the upper portion is normalized, the entire number is
considered to be normalized.

222 U3119-J-Z125-2-7600

Floating-point instructions Overview

The mantissa of the lower portion of an extended floating-point number determines the
14 lowest-order hexadecimal digits of the 28 hexadecimal digits in the mantissa of the
extended floating-point number. The sign and the characteristic of the lower portion are
ignored by instructions that process extended floating-point numbers; however,
instructions that create extended floating-point numbers also create a sign and a
characteristic in the lower portion: the sign is identical to the sign of the upper portion,
and the characteristic is 14 less than that of the upper portion.

When an extended floating-point number is created in a floating-point register pair, the
lower portion is given the same sign as the upper portion, and its characteristic is set
to 14 less than that of the upper portion, unless a genuine zero was created. If, by
subtracting 14, the characteristic of the lower portion becomes less than zero, it is set
to a value which is 128 too large. The "exponent underflow" state will only occur,
however, if there is also an underflow in the characteristic of the upper portion.

When an extended floating-point number is turned into a genuine zero, both the upper
and the lower portion are turned into a genuine zero.

Floating-point registers

There are 4 floating-point registers with the numbers (addresses) 0, 2, 4 and 6. These
floating-point registers exist alongside the general-purpose registers, which are used in
many of the remaining instructions (and in some floating-point instructions for base and
index addressing).

Each floating-point register is 64 bits long. Short and long floating-point numbers fit into
a single floating-point register, extended floating-point numbers require a pair of
floating-point registers: either the pair with number 0, consisting of floating-point
registers 0 and 2, or the pair with number 4, consisting of floating-point registers 4 and
6.

A short floating-point number occupies only the leftmost 32 bits of the 64 bits in a
floating-point register. All floating-point instructions with short operands ignore the
rightmost 32 bits or leave them unchanged when short floating-point numbers are
created in a register.

If the R1 or R2 field of a floating-point number is given a register number other than 0,
2, 4 or 6, or (in the case of instructions with extended format) a register pair number
other than 0 or 4, a program interrupt will occur due to an addressing error.

U3119-J-Z125-2-7600 223

Overview Floating-point instructions

Value range of floating-point numbers

The absolute value range V of normalized floating-point numbers depends on their
format:

Short format:

16-65 V (1 - 16-6) * 1663

Long format:

16-65 V (1 -6-14) * 1663

Extended format:

16-65 V (1 - 16-28) * 1663

In all three formats, the (absolute) value range V is approximately as follows:

5.4 * 10-79 V 7.2 * 1075

Guard digits

The final result of a floating-point instruction has 6 hexadecimal digits in the case of
short format, 14 hexadecimal digits in the case of long format, and 28 hexadecimal
digits in the case of extended format. During instruction execution, however, interim
results have one extra hexadecimal digit. This (lowest-order) hexadecimal digit is known
as the guard digit. The guard digit normally increases the accuracy of the result. Its
precise effect, however, is specific to the instruction used, and is therefore described
for each individual floating-point instruction.

Instruction set

There are 52 floating-point instructions. These cause two floating-point numbers to be
added, subtracted, multiplied or divided, or one floating-point number to be loaded,
stored, rounded or halved. All instructions use either one floating-point register and one
main memory operand, or two floating-point registers.

For short and long floating-point numbers there are floating-point instructions for all the
above-named tasks, while for extended floating-point numbers there are only
instructions for addition, subtraction, multiplication and division.

Most instructions create as their results a floating-point number in the same format as
their initial operands.
However, multiplication instructions create a long (or extended) product from short (or
long) operands, and some division instructions create short (or long) quotients from
long (or extended) dividends. Finally, two rounding instructions make it possible to
round from extended to long format and from long to short format.

224 U3119-J-Z125-2-7600

Floating-point instructions Overview

Most instructions normalize their results. However, there are addition and subtraction
instructions which do not normalize their results. Many instructions leave their results
unchanged, so that whether the result is normalized or not depends on the initial
operands used.

The instruction for extended division (DXR) is only available on central processing units
which have 31-bit addressing mode at their disposal.

The mnemonic operation code of each floating-point instruction contains, at its second
or third position, an identifier for the format of the floating-point numbers which it
processes. The letters below generally have the following meanings:

E short floating-point format, normalized
U short floating-point format, unnormalized
D long floating-point format, normalized
W long floating-point format, unnormalized
X extended floating-point format, normalized

Programming notes

A long floating-point number can be converted into an extended floatingpoint
number by appending to it a long floating-point number with a mantissa of =0. In
particular, this number can be genuine zero. The reverse conversion, i.e. from an
extended to a long floating-point number, is accomplished either by means of the
LRDR instruction or simply by leaving out the lower portion.

When exponent overflow or underflow occurs, the second long floating-point number
of an extended floating-point number represents the correct lower portion of that
number whenever its characteristic is at least 14 less than that of the first long
floating-point number. If the difference of the characteristics of both long floating-
point numbers is less than 14 and the extended floating-point number is not a
genuine zero, then the lower portion is incorrect.

Up to three leading bits of a normalized floating-point number may be = 0 since
normalization takes place one hexadecimal digit at a time, i.e. in 4-bit units.

BS2000 presets all four mask bits of the program mask to 1. For this reason, a
program interrupt will normally occur under the conditions described above for
exponent underflow and significance. However, it is possible for the application
program to change the presetting using the instruction SPM (Set Program Mask).

When an extended floating-point number is normalized, the entire 28-digit mantissa
is used. The lower portion does not have to be normalized although it constitutes
the extended floating-point number.

U3119-J-Z125-2-7600 225

Overview Floating-point instructions

To convert a 32-bit fixed-point number into a long floating-point number, and vice
versa a long floating-point number into a 32-bit fixed-point number, the following
instruction sequences may be used:

Name Operation Operands

.
FPTOFL EQU * Fixed-point no. from GP reg. 0

ST 0,TMPDWORD+4
XI TMPDWORD+4,X’80’
LD 0,TMPDWORD
LE 0,TWOEX31
SD 0,TWOEX31 Floating-point no. in GP reg. 0

FLTOFP EQU * Floating-point no. in GP reg. 0
AW 0,TWOEX31
BM TOOSMALL Error: <-2 31

CE 0,TWOEX31
BNE TOOBIG Error: +231

STD 0,TMPDWORD
XI TMPDWORD+4,X’80’
L 0,TMPDWORD+4 Fixed-point no. in GP reg. 0
.

* Requisite data:

TMPDWORD DS D
TWOEX31 DC X’4E00000080000000’ 8*16 -7 *16 14 =231

.

The FPTOFL routine first transforms the fixed-point number to be converted from the
area -231...+231-1 to the area 0...232-1 by adding the value 231 (-modulo 232-). This is
done by inverting the sign position by means of XI. The routine then makes this
number the right portion of the mantissa of a long floating-point number with the
exponent 14, i.e. the characteristic (64+14)10 = (4E)16. Finally, it subtracts from this
number the previously added 231 and normalizes the result.

The FLTOFP routine first performs unnormalized addition of the value 231 to the
floating-point number to be converted and shifts any non-integer hexadecimal digits
to the right. No rounding takes place. If the sum is <0, the floating-point number
was <-231, i.e. it was too small for the value range of fixed-point numbers, if the sum
is 232, the number was too large. This latter case is shown by the fact that the
leftmost 6 hexadecimal digits 0. The previously added 231 must now be subtracted
from the right portion of the mantissa; as with FPTOFL, this is done by means of an
XI instruction. The final L instruction loads the finished fixed-point number into
general-purpose register 0.

226 U3119-J-Z125-2-7600

Floating-point instructions AD, ADR, AE, AER, AXR

Add Normalized

Function

The instructions AER, AE, ADR, AD and AXR add two floating-point numbers. The
normalized sum replaces the first operand.
The condition code is set in accordance with the value of the sum.

Assembler formats

Name Operation Operands Remarks

* short addends, short sum:

AER R1,R2 R1,R2 =0, 2, 4 or 6
AE R1,D2(X2,B2) R1 =0, 2, 4 or 6 and

* long addends, long sum:

ADR R1,R2 R1,R2 =0, 2, 4 or 6
AD R1,D2(X2,B2) R1 =0, 2, 4 or 6 and

* extended addends, extended sum:

AXR R1,R2 R1,R2 =0 or 4

Machine formats

AER [RR] X’3A’ R1 R2 (Short operands)

AE [RX] X’7A’ R1 X2 B2 D2 (Short operands

ADR [RR] X’2A’ R1 R2 (Long operands)

AD [RX] X’6A’ R1 X2 B2 D2 (Long operands)

AXR [RR] X’36’ R1 R2 (Extended
operands)

0 8 12 16 20 31

U3119-J-Z125-2-7600 227

AD, ADR, AE, AER, AXR Floating-point instructions

Description

First the characteristics of both operands are compared; the mantissa of the operand
with the smaller characteristic is shifted to the right by the difference of the
characteristics, and its characteristic is increased by the same amount, so that the
characteristics are equal. The last hexadecimal digit to be shifted beyond the boundary
is preserved as a guard digit. The guard digit of the other operand - or of both
operands if the characteristics were identical prior to the addition operation - is set to
=0.

Next, both mantissas, including the guard digits, are added, with their signs being taken
into account. Their sum forms a subtotal consisting of 7 hexadecimal digits in the case
of short format, 15 hexadecimal digits in the case of long format, and 29 hexadecimal
digits in the case of extended format.

If an overflow occurred, the subtotal is shifted to the right by one hexadecimal position;
then a 116 is entered in the hexadecimal position freed to the left, and the characteristic
is increased by 1.

Significance occurs when the subtotal, including guard digit, is =0. If in this case the
significance bit in the program mask has been set to 1 (default value in BS2000), a
program interrupt will occur; otherwise, no program interrupt occurs and a genuine
zero will be created as the final result.

If the subtotal, including guard digit, is not equal to 0, it will be normalized, i.e. shifted
to the left until the highest-order hexadecimal digit is other than 016. Any hexadecimal
positions freed from the right will be padded with 016. The characteristic is reduced by
the number of shifted hexadecimal positions.

Finally, the normalized subtotal is truncated to 6 or 14 or 28 hexadecimal digits and
made into the final result together with the previously calculated characteristic. With
extended format, a characteristic which is 14 less than the characteristic of the upper
portion is created in the lower portion of the floating-point sum, and the sign of the
lower portion is made identical to that of the upper portion.

Exponent overflow occurs when the characteristic of the final result is greater than 127.
A program interrupt then takes place: the sign and the mantissa are correct, but the
result characteristic(s) are 128 too small.

Exponent underflow occurs when the characteristic of the final result is less than 0. If,
in this case, the exponent underflow bit in the program mask has been set to =1
(default value in BS2000), a program interrupt takes place: the sign and the mantissa
are correct, but the result characteristic(s) are 128 too large. Otherwise, no program
interrupt takes place and a genuine zero is created as final result.

With the AXR instruction, exponent underflow does not occur when only the lower
portion of the final result has a characteristic less than 0. In this case, its characteristic
is set 128 too large.

228 U3119-J-Z125-2-7600

Floating-point instructions AD, ADR, AE, AER, AXR

Condition code

0~Zero The mantissa of the final result is = 0; the sign is positive.
1~Minus Result is < 0.
2~Plus Result is > 0.
3 Not used.

Program interrupts

Type Weight Causes

Address trans. error X’48’ AE, AD: Read access of operand2 illegal.
Addressing error X’5C’ Wrong floating-point reg. specified or

D2(X2,B2) not full (double) word boundary.
Exponent overflow X’64’ Sum characteristic > 127
Significance X’6C’ Mantissa =0, characteristic �0 and

mask bit for significance =1
Exponent underflow X’70’ Sum characteristic < 0

Programming notes

Switching the two operands in a normalized addition operation does not in any way
change the result.

Normalized addition normalizes the sum but not the addends.

BS2000 presets the bits for exponent underflow and significance in the program
mask to 1, so that in the above-mentioned cases a program interrupt will occur. An
application program can change the presetting by means of the instruction SPM
(Set Program Mask).

With AE and AER, the rightmost 32 bits of the floating-point register involved are
ignored or left unchanged.

R2 may be identical to =R1.

U3119-J-Z125-2-7600 229

AD, ADR, AE, AER, AXR Floating-point instructions

Example

Name Operation Operands

.
DS 0D

FLNO1 DC X’3F11111111111111’
FLNO2 DC X’C001111111111111’

.

.

.
LD 2,FLNO1
AD 2,FLNO2
.

The final result in floating-point register 2 is X’3210000000000000’ together with the
condition code 2~Plus. After the characteristics have been unified, the first operand has
the value X’4001111111111111’ and the guard digit =116. The subtotal is
X’40000000000000001’.

230 U3119-J-Z125-2-7600

Floating-point instructions AU, AUR, AW, AWR

Add Unnormalized

Function

The instructions AUR, AU, AWR and AW add two floating-point numbers. The sum
replaces the first operand; it is not normalized.
The condition code is set in accordance with the value of the sum.

Assembler formats

Name Operation Operands Remarks

* short addends, short sum:

AUR R1,R2 R1,R2 =0, 2, 4 or 6
AU R1,D2(X2,B2) R1 =0, 2, 4 or 6

* long addends, long sum:

AWR R1,R2 R1,R2 =0, 2, 4 or 6
AW R1,D2(X2,B2) R1 =0, 2, 4 or 6 and

Machine formats

AUR [RR] X’3E’ R1 R2 (Short operands)

AU [RX] X’7E’ R1 X2 B2 D2 (Short operands)

AWR [RR] X’2E’ R1 R2 (Long operands)

AW [RX] X’6E’ R1 X2 B2 D2 (Long operands)

0 8 12 16 20 31

U3119-J-Z125-2-7600 231

AU, AUR, AW, AWR Floating-point instructions

Description

First, the characteristics of both operands are compared; the mantissa of the operand
with the smaller characteristic is shifted to the right by the difference of the
characteristics, and its characteristic is increased by the same amount, so that the
characteristics are equal. The last hexadecimal digit to be shifted beyond the boundary
is preserved as a guard digit. The guard digit of the other operand - or of both
operands if the characteristics were identical prior to the addition operation - is set to
=016.
Next, both mantissas, including the guard digits, are added, with their signs being taken
into account. Their sum forms a subtotal consisting of 7 hexadecimal digits in the case
of short format and 15 hexadecimal digits in the case of long format.

If an overflow occurred, the subtotal is shifted to the right by one hexadecimal position,
then a 116 is entered in the hexadecimal position freed to the left, and the characteristic
is increased by 1.

Significance occurs when the subtotal, including guard digit, is =0. If in this case the
significance bit in the program mask has been set to =1 (default value in BS2000), a
program interrupt will occur; otherwise, no program interrupt occurs and a genuine
zero will be created as the final result.
The subtotal (without being normalized beforehand) is truncated to 6 or 14 hexadecimal
digits and made into the final result together with the previously calculated
characteristic.

Exponent overflow occurs when the characteristic of the final result is greater than 127.
A program interrupt then takes place: the sign and the mantissa are correct, but the
result characteristic(s) are 128 too small.

Exponent underflow cannot occur.

Condition code

0~Zero The mantissa of the result is = 0; the sign is positive.
1~Minus The result is < 0.
2~Plus The result is > 0.
3 Not used.

232 U3119-J-Z125-2-7600

Floating-point instructions AU, AUR, AW, AWR

Program interrupts

Type Weight Causes

Address trans. error X’48’ AU, AW: Read access of operand2 illegal.
Addressing error X’5C’ Wrong floating-point reg. specified or

D2(X2,B2) not full (double) word boundary.
Exponent overflow X’64’ Sum characteristic > 127
Significance X’6C’ Mantissa =0, characteristic �0 and

mask bit for significance =1

Programming notes

Switching the two operands in a normalized addition operation does not in any way
change the result.

BS2000 presets the bit for significance in the program mask to 1, so that in the
above-mentioned case a program interrupt will occur. An application program can
change the presetting by means of the instruction SPM (Set Program Mask).

With AU and AUR, the rightmost 32 bits of the floating-point register involved are
ignored or left unchanged.

Unnormalized addition is equivalent to normalized addition except for the following
differences:

The result is not normalized.
Exponent underflow cannot occur.
The guard digit is not used for determining significance.

For extended floating-point operands, there does exist an instruction for normalized
addition (AXR), but not for unnormalized addition.

Example

See the example for unnormalized subtraction (SU).

U3119-J-Z125-2-7600 233

CD, CDR, CE, CER Floating-point instructions

Compare

Function

The instructions CER, CE, CDR and CD compare two floating-point numbers.
The condition code is set in accordance with the comparison result.

Assembler formats

Name Operation Operands Remarks

* short operands:

CER R1,R2 R1,R2 =0, 2, 4 or 6
CE R1,D2(X2,B2) R1 =0, 2, 4 or 6 and

* long operands:

CDR R1,R2 R1,R2 =0, 2, 4 or 6
CD R1,D2(X2,B2) R1 =0, 2, 4 or 6

Machine formats

CER [RR] X’39’ R1 R2 (Short operands)

CE [RX] X’79’ R1 X2 B2 D2 (Short operands)

CDR [RR] X’29’ R1 R2 (Long operands)

CD [RX] X’69’ R1 X2 B2 D2 (Long operands)

0 8 12 16 20 31

Description

The comparison is performed as though a normalized subtraction operation were to
take place in which the difference is not stored. The condition code is set to 0~Equal if
both operands, including guard digit, are identical; it is set to 1~Low (or 2~High) if the
first operand is smaller (larger) than the second operand.

Exponent underflow, exponent overflow and significance cannot occur.

234 U3119-J-Z125-2-7600

Floating-point instructions CD, CDR, CE, CER

Condition code

0~Equal Operand1 incl. guard digit = operand2.
1~Low Operand1 is < operand2.
2~High Operand1 is > operand2.
3~Overflow Not used.

Program interrupts

Type Weight Causes

Address trans. error X’48’ CE, CD: Read access of operand2 illegal.
Addressing error X’5C’ Wrong floating-point reg. specified or

D2(X2,B2) not full (double) word boundary.

Programming notes

Two operands, both with mantissa 0, produce the condition code 0~Equal even
when they have different signs or characteristics.

It is not a sufficient condition for inequality when the characteristics of the two
operands are different.

The instructions CE and CER compare only the leftmost 32 bits of their operands;
for this reason, it is possible for CE and CER to indicate equality where CD and
CDR would not.

There is no instruction to compare two floating-point operands in extended format.

Example

Name Operation Operands

.
DS 0F

FLNO1 DC X’48001000’ =16 5+0
FLNO2 DC X’47010001’ =16 5+16

.

.

.
LE 6,FLNO1
CE 6,FLNO2 yields CC 1~Low
.

With this data the instructions above set the condition code to 1~Low because after the
characteristics are unified the guard digits are unequal. In contrast, the condition code
would already be set to 0~Equal if FLNO2 were only one smaller, i.e. had the value
X’4610000F’ =165+15, since in this case the two guard digits would be identical.

U3119-J-Z125-2-7600 235

DD, DDR, DE, DER, DXR Floating-point instructions

Divide

Function

The instructions DER, DE, DDR, DD and DXR divide two floating-point numbers. The
normalized quotient replaces the first operand.
The condition code is left unchanged.
The DXR instruction is only available in the instruction set of central processing units
that have 31-bit addressing mode at their disposal.

Assembler formats

Name Operation Operands Remarks

* short operands, short quotient:

DER R1,R2 R1,R2 =0, 2, 4 or 6
DE R1,D2(X2,B2) R1 =0, 2, 4 or 6 and

* long operands, long quotient:

DDR R1,R2 R1,R2 =0, 2, 4 or 6
DD R1,D2(X2,B2) R1 =0, 2, 4 or 6 and

* extended operands, extended quotient:

DXR R1,R2 R1,R2 =0 or 4

Machine formats

DER [RR] X’3D’ R1 R2 (Short operands)

DE [RX] X’7D’ R1 X2 B2 D2 (Short operands)

DDR [RR] X’2D’ R1 R2 (Long operands)

DD [RX] X’6D’ R1 X2 B2 D2 (Long operands)

DXR [RRE] X’B22D’ /////// R1 R2 (Extended
operands)

0 16 24 28 31

236 U3119-J-Z125-2-7600

Floating-point instructions DD, DDR, DE, DER, DXR

Description

Floating-point operand1 is the dividend, floating-point operand2 the divisor. The
normalized quotient replaces the first operand. No remainder is created.

First, the dividend and the divisor are normalized so that they do not have any
hexadecimal zeros, and their characteristics are adapted (reduced) accordingly. The
normalization operation takes place internally and the initial operands are left
unchanged; if the dividend (i.e. its amount) is larger than the divisor, it is shifted to the
right by one hexadecimal position and its characteristic is increased by 1.

The characteristics of both operands are subtracted and the two (normalized) mantissas
are divided. The resultant quotient forms an interim result together with the difference of
the characteristics (plus 64) and the algebraic computed sign. All hexadecimal digits in
both mantissas are taken into account during the division operation.

Finally, the interim result is truncated to 6 hexadecimal digits in the case of DER and
DE, to 14 hexadecimal digits in the case of DDR and DD, and to 28 hexadecimal digits
in the case of DXR. It is then made into the result, which is always normalized.

Exponent overflow occurs when the characteristic of the final result is greater than 127
and its mantissa is non-zero. A program interrupt then takes place: the mantissa and
sign are correct, but the characteristic of the final result is 128 too small. With DXR, it
may happen that the characteristic of the lower portion is also 128 too small.

Exponent underflow occurs when the characteristic of the final result is less than 0 and
its mantissa is non-zero. If, in this case, the bit for exponent underflow is set to =1 in
the program mask (default value with BS2000) a program interrupt will occur: the
mantissa and the sign are correct, but the characteristic is 128 too large; otherwise, no
program interrupt will occur and a genuine zero is created as quotient. With DXR,
exponent underflow does not occur if the characteristic is less than 0 in the lower
portion only. In this case, its characteristic is 128 too large.

Exponent overflow or underflow can only occur with the final result, not when a
characteristic overflows or underflows during intermediate computations.

A division error occurs when the mantissa of the divisor is =0 (even if the dividend is
likewise =0). A program interrupt takes place.

If the mantissa of the dividend is =0 but the divisor 0, a genuine zero is created as a
final result.

The sign of the quotient is computed according to the usual algebraic rules; a genuine
zero, however, always has a positive sign.

Bit positions 16 to 23 in the DXR instruction are ignored.

U3119-J-Z125-2-7600 237

DD, DDR, DE, DER, DXR Floating-point instructions

Condition code

Stays the same.

Program interrupts

Type Weight Causes

Address trans. error X’48’ DE, DD: Read access of operand2 illegal.
Invalid operation X’58’ DXR attempted on a central processing
code unit without 31-bit capability
Addressing error X’5C’ Wrong floating-point reg. specified or

D2(X2,B2) not full (double) word boundary.
Exponent overflow X’64’ Quotient characteristic > 127
Division error X’68’ Divisor mantissa =0
Exponent underflow X’70’ Quotient characteristic < 0

Programming notes

With DER and DE, the rightmost 32 bits of floating-point register R1 are ignored for
the mantissa division, and are left unchanged. The same applies to the rightmost 32
bits of floating-point register R2 in the case of DER.

BS2000 presets the bit for exponent underflow to 1 in the program mask so that
under the conditions described above a program interrupt will occur by default.
However, the application program can change the presetting using the SPM
instruction.

R2 may be equal to R1.

238 U3119-J-Z125-2-7600

Floating-point instructions DD, DDR, DE, DER, DXR

Example

Name Operation Operands

.
DS 0D

DIVIDEND DC X’00100000’ 16 -64 *(16 -1 +8*16 -7) = 1*16 -71 *(16 6+8)
DC X’80000000’

DIVISOR DC X’80020000’ -16 -64 *(2*16 -2 +16-7) =-8 -1 *16 -71 *(16 6+8)
DC X’10000000’
.
.
.
LD 6,DIVIDEND
DD 6,DIVISOR The final result in floating-point
. register 6 is:

X’C180000000000000’=-16 +1* 8* 16-1 =-8.

Note that exponent underflow "actually" occurs when the divisor is normalized. Since,
however, it only occurs with the interim result and not with the final result, no program
interrupt takes place.

U3119-J-Z125-2-7600 239

HDR, HER Floating-point instructions

Halve

Function

The instructions HER and HDR divide the floating-point number in floating-point register
R2 by +2 and store the normalized result in floating-point register R1.
The condition code is left unchanged.

Assembler formats

Name Operation Operands Remarks

* short operands:

HER R1,R2 R1,R2 =0, 2, 4 or 6

* long operands:

HDR R1,R2 R1,R2 =0, 2, 4 or 6

Machine formats

HER [RR] X’34’ R1 R2 (Short operands)

HDR [RR] X’24’ R1 R2 (Long operands)

0 8 12 15

Description

The 6-digit (with HER) or 14-digit (with HDR) mantissa of the floating-point number in
floating-point register R2 is shifted one bit to the right and the bit position freed to the
left is padded with 0. The bit position right-shifted out of the mantissa is placed to the
left in the guard digit and the remaining three bits of the guard digit are set to =0.

The interim result thus produced, including the guard digit, is normalized and the final
result is stored in floating-point register R1.

Exponent underflow occurs when the characteristic of the final result is less than 0 and
its mantissa is non-zero. If, in this case, the bit for exponent underflow is set to =1 in
the program mask (default value in BS2000), a program interrupt takes place: the
mantissa and the sign are correct, but the characteristic is 128 too large; otherwise, no
program interrupt takes place and a genuine zero is created as the final result.

240 U3119-J-Z125-2-7600

Floating-point instructions HDR, HER

If the mantissa of the initial operand (in floating-point register R2) is =0, a genuine zero
will be created as the final result. Significance or exponent underflow do not occur in
this case.

The sign of the result is equal to that of the initial operand; however, a genuine zero
always has a positive sign.

Condition code

Stays the same.

Program interrupts

Type Weight Causes

Addressing error X’5C’ Wrong floating-point register
Exponent underflow X’70’ Result characteristic < 0

Programming notes

With HER, the rightmost 32 bits of floating-point register R2 are ignored and the
rightmost 32 bits of floating-point register R1 are left unchanged.

The result of an HER or HDR instruction is always identical to the result of floating-
point division using DER or DDR and a divisor of 2.

BS2000 presets the mask bit for exponent underflow to 1 in the program mask, so
that under the conditions described above a program interrupt will occur. However,
the application program can change the presetting by means of the SPM instruction.

A genuine zero can only occur if the initial operand has a mantissa of =0 or when
an exponent underflow occurs and the bit for exponent underflow is set to =0 in the
program mask.

R2 may be equal to R1.

U3119-J-Z125-2-7600 241

HDR, HER Floating-point instructions

Example

Name Operation Operands

.
LE 6,FLNO
HER 4,6
.
.
.
DS 0F

FLNO DC X’86000001’ -1*16 -6 *16 -58

.

Following instruction execution, floating-point register 4 has the value:
X’80800000’ =-0,5*16-64.

The condition code and the rightmost portion of floating-point register 4 are left
unchanged.

242 U3119-J-Z125-2-7600

Floating-point instructions LCDR, LCER

Load Complement

Function

The instructions LCER and LCDR load the floating-point number in floating-point register
R2 into floating-point register R1, reversing its sign and setting the condition code in
accordance with the value in R1.

Assembler formats

Name Operation Operands Remarks

* short operands:

LCER R1,R2 R1,R2 =0, 2, 4 or 6

* long operands:

LCDR R1,R2 R1,R2 =0, 2, 4 or 6

Machine formats

LCER [RR] X’33’ R1 R2 (Short operands)

LCDR [RR] X’23’ R1 R2 (Long operands)

0 8 12 15

Description

The short (LCER) or long (LCDR) floating-point number in floating-point register R2 is
moved to floating-point register R1 after reversing its sign. No normalization takes
place.

The sign is also reversed when the mantissa of the initial operand is =0; however, in
this case the condition code is set to 0~Zero.

Condition code

0~Zero Mantissa of result = 0.
1~Minus Result is < 0.
2~Plus Result is > 0.
3 Not used.

U3119-J-Z125-2-7600 243

LCDR, LCER Floating-point instructions

Program interrupts

Type Weight Causes

Addressing error X’5C’ Wrong floating-point register specified.

Programming notes

R1 may be equal to R2.

The LCER instruction moves only the leftmost 32 bits of floating-point register R2
and leaves the rightmost 32 bits of floating-point register R1 unchanged.

244 U3119-J-Z125-2-7600

Floating-point instructions LD, LDR, LE, LER

Load

Function

The instructions LER, LE, LDR and LD load a floating-point number into a floating-point
register.
The condition code is left unchanged.

Assembler formats

Name Operation Operands Remarks

* short operands:

LER R1,R2 R1,R2 =0, 2, 4 or 6
LE R1,D2(X2,B2) R1 =0, 2, 4 or 6 and

* long operands:

LDR R1,R2 R1,R2 =0, 2, 4 or 6
LD R1,D2(X2,B2) R1 =0, 2, 4 or 6

Machine formats

LER [RR] X’38’ R1 R2 (Short operands)

LE [RX] X’78’ R1 X2 B2 D2 (Short operands)

LDR [RR] X’28’ R1 R2 (Long operands)

LD [RX] X’68’ R1 X2 B2 D2 (Long operands)

0 8 12 16 20 31

Description

The short (LE and LER) or long (LD and LDR) floating-point number in floating-point
register R2 (LER and LDR) or in the main memory word (LE) or main memory
doubleword (LD) is loaded into floating-point register R1. No normalization takes place.

U3119-J-Z125-2-7600 245

LD, LDR, LE, LER Floating-point instructions

Condition code

Stays the same.

Program interrupts

Type Weight Causes

Address trans. error X’48’ LE, LD: Read access of operand2 illegal.
Addressing error X’5C’ Wrong floating-point reg. specified or

D2(X2,B2) not full (double) word boundary.

Programming notes

The instructions LE and LER leave the rightmost 32 bits of floating-point register R1
unchanged.

246 U3119-J-Z125-2-7600

Floating-point instructions LNDR, LNER

Load Negative

Function

The instructions LNER and LNDR load the floating-point number in floating-point
register R2 with a negative sign into floating-point register R1 and set the condition
code in accordance with the value in R1.

Assembler formats

Name Operation Operands Remarks

* short operands:

LNER R1,R2 R1,R2 =0, 2, 4 or 6

* long operands:

LNDR R1,R2 R1,R2 =0, 2, 4 or 6

Machine formats

LNER [RR] X’31’ R1 R2 (Short operands)

LNDR [RR] X’21’ R1 R2 (Long operands)

0 8 12 15

Description

The short (LNER) or long (LNDR) floating-point number in floating-point register R2 is
moved with a negative sign into floating-point register R1. No normalization takes place.

The sign is also set to negative if the mantissa of the initial operand is =0; however, in
this case the condition code is set to 0~Zero.

Condition code

0~Zero Mantissa of result = 0.
1~Minus Result is < 0.
2 Not used.
3 Not used.

U3119-J-Z125-2-7600 247

LNDR, LNER Floating-point instructions

Program interrupts

Type Weight Causes

Addressing error X’5C’ Wrong floating-point register specified.

Programming notes

R1 may be equal to R2

The LNER instruction moves only the leftmost 32 bits of floating-point register R2
and leaves the rightmost 32 bits of floating-point register R1 unchanged.

248 U3119-J-Z125-2-7600

Floating-point instructions LPDR, LPER

Load Positive

Function

The instructions LPER and LPDR load the floating-point number in floating-point register
R2 with a positive sign into floating-point register R1 and set the condition code in
accordance with the value in R1.

Assembler formats

Name Operation Operands Remarks

* short operands:

LPER R1,R2 R1,R2 =0, 2, 4 or 6

* long operands:

LPDR R1,R2 R1,R2 =0, 2, 4 or 6

Machine formats

LPER [RR] X’30’ R1 R2 (Short operands)

LPDR [RR] X’20’ R1 R2 (Long operands)

0 8 12 15

Description

The short (LPER) and long (LPDR) floating-point number in floating-point register R2 is
moved with a positive sign to floating-point register R1. No normalization takes place.

The sign is also set to positive if the mantissa of the initial operation is =0; however, in
this case the condition code is set to 0~Zero.

Condition code

0~Zero Mantissa of result = 0.
1 Not used.
2~Plus Result is > 0.
3 Not used.

U3119-J-Z125-2-7600 249

LPDR, LPER Floating-point instructions

Program interrupts

Type Weight Causes

Addressing error X’5C’ Wrong floating-point register specified.

Programming notes

R1 may be equal to R2

The LPER instruction moves only the leftmost 32 bits of floating-point register R2
and leaves the rightmost 32 bits of floating-point register R1 unchanged.

250 U3119-J-Z125-2-7600

Floating-point instructions LRDR, LRER

Load Rounded

Function

The instructions LRER and LRDR load the floating-point number in floating-point register
(pair) R2 into floating-point register R1, rounding it to the next lowest floating-point
format.
The condition code is left unchanged.

Assembler formats

Name Operation Operands Remarks

* short operand1, long operand2:

LRER R1,R2 R1,R2 =0, 2, 4 or 6

* long operand1, extended operand2:

LRDR R1,R2 R1 =0, 2, 4 or 6 and
R2 =0 or 4

Machine formats

LRER [RR] X’35’ R1 R2 (Short operand1, long operand2)

LRDR [RR] X’25’ R1 R2 (Long operand1,
extended operand2)

0 8 12 15

Description

The long (LRER) or extended (LRDR) floating-point number in floating-point register R2
or in floating-point register pair R2 and R2+2 is rounded to short (LRER) or long
(LRDR) floating-point format and moved to floating-point register R1. No normalization
takes place. The sign is left unchanged.

Rounding consists of adding a one to bit position 32 or 72 of the mantissa of the
second operand and passing any carry over to the higher-order mantissa positions.

If a carry over beyond the highest-order hexadecimal position of the mantissa occurs
during rounding, this position is shifted one position to the right, a 116 is entered in the
freed position, and the characteristic is increased by one.

U3119-J-Z125-2-7600 251

LRDR, LRER Floating-point instructions

Exponent overflow occurs when the result characteristic is greater than 127. In this
case a program interrupt takes place, with the mantissa and the sign being correct but
the characteristic being 128 too small.

Exponent underflow and significance cannot occur.

Condition code

Stays the same.

Program interrupts

Type Weight Causes

Addressing error X’5C’ Wrong floating-point register specified.
Exponent overflow X’64’ Result characteristic > 127

Programming notes

R1 may be equal to R2. However, note that once the operation has taken place the
right portion of general-purpose register R1 (with LRER) or the contents of floating-
point register R1+2 (with LRDR) may no longer be used for interpreting the results
(see example).

The LRER instruction leaves the rightmost 32 bits of floating-point register R1
unchanged.

Example

Name Operation Operands

.
LD 0,=XL8’C6FFFFFF890ABCDE’
LRER 0,0
CD 0,=XL8’C7100000890ABCDE’ yields CC 0~Equal
.

The above instructions set the condition code to 0~Equal. The initial operand has the
value -(167-1+0.5...); the result has the value -167. This result is a short floating-point
number. Since the right portion of result register 0 remains unchanged, the
interpretation of the result as a long floating-point number (shown here for
demonstration purposes only) is arithmetically incorrect.

252 U3119-J-Z125-2-7600

Floating-point instructions LTDR, LTER

Load and Test

Function

The instructions LTER and LTDR load the floating-point number in floating-point register
R2 into floating-point register R1 and set the condition code in accordance with the
value in R1.

Assembler formats

Name Operation Operands Remarks

* short operands:

LTER R1,R2 R1,R2 =0, 2, 4 or 6

* long operands:

LTDR R1,R2 R1,R2 =0, 2, 4 or 6

Machine formats

LTER [RR] X’32’ R1 R2 (Short operands)

LTDR [RR] X’22’ R1 R2 (Long operands)

0 8 12 15

Description

The short (LTER) or long (LTDR) floating-point number in floating-point register R2 is
moved to floating-point register R1 without being changed. The condition code is set in
accordance with the value of the moved number. No normalization takes place.

Condition code

0~Zero Mantissa of result is = 0.
1~Minus Result is < 0.
2~Plus Result is > 0.
3 Not used.

U3119-J-Z125-2-7600 253

LTDR, LTER Floating-point instructions

Program interrupts

Type Weight Causes

Addressing error X’5C’ Wrong floating-point register specified.

Programming notes

R1 may be equal to R2.

The LTER instruction moves and tests only the leftmost 32 bits of floating-point
register R2 and leaves the rightmost 32 bits of floating-point register R1 unchanged.
Accordingly, it may happen that an LTER shows equality where an LTDR does not.

254 U3119-J-Z125-2-7600

Floating-point instructions MD, MDR, ME, MER, MXD, MXDR, MXR

Multiply

Function

The instructions MER, ME, MDR, MD, MXDR, MXD and MXR multiply two floating-point
numbers. The normalized product replaces the first operand.
The condition code is left unchanged.

Assembler formats

Name Operation Operands Remarks

* short multiplier and multiplicand, long product:

MER R1,R2 R1,R2 =0, 2, 4 or 6
ME R1,D2(X2,B2) R1 =0, 2, 4 or 6 and

* short multiplicand and multiplier, long product:

MDR R1,R2 R1,R2 =0, 2, 4 or 6
MD R1,D2(X2,B2) R1 =0, 2, 4 or 6 and

* long multiplicand and multiplier, extended product:

MXDR R1,R2 R1 =0 or 4 and
* R2 =0, 2, 4 or 6

MXD R1,D2(X2,B2) R1 =0 or 4 and

* extended multiplicand and multiplier, extended product:

MXR R1,R2 R1,R2 =0 or 4

Machine formats

MER [RR] X’3C’ R1 R2 (Short operands,
long product)

ME [RX] X’7C’ R1 X2 B2 D2 (Short operands,
long product)

MDR [RR] X’2C’ R1 R2 (Long operands,
long product)

MD [RX] X’6C’ R1 X2 B2 D2 (Long operands,
long product)

U3119-J-Z125-2-7600 255

MD, MDR, ME, MER, MXD, MXDR, MXR Floating-point instructions

MXDR [RR] X’27’ R1 R2 (Long operands,
extended product)

MXD [RX] X’67’ R1 X2 B2 D2 (Long operands,
extended product)

MXR [RR] X’26’ R1 R2 (Extended operands,
extended product)

0 8 12 16 20 31

Description

The first floating-point operand is the multiplicand; the second floating-point operand is
the multiplier. The (normalized) product replaces the first operand.

With the MER and ME instructions, the multiplicand and the multiplier have 6
hexadecimal digits; with MDR, MD, MXDR and MXD they have 14 hexadecimal digits,
and with MXR they have 28 hexadecimal digits. The product has 14 hexadecimal digits
for MER, ME, MDR and MD, and 28 hexadecimal digits for MXDR, MXD and MXR.

First, the multiplicand and the multiplier are normalized. Normalization takes place
internally; the initial operands are left unchanged.

The characteristics of the two operands are added; the two (normalized) mantissas are
multiplied; the resultant product forms an interim result together with the characteristic
sum minus 64 and the algebraic computed sign. The mantissa of the interim result is
exact. If it contains a leading hexadecimal zero, it is shifted one hexadecimal position
to the left and the characteristic is reduced by 1. Lastly, the final result is created by
enlarging the interim result with two hexadecimal zeros to 14 hexadecimal positions
(with ME and MER), or shortening it to 14 or 28 hexadecimal positions (with the
remaining instructions).

Exponent overflow occurs when the characteristic of the final result is greater than 127
and its mantissa is non-zero. A program interrupt then takes place: the mantissa and
the sign are correct, but the characteristic of the result is 128 too small. With MXDR,
MXD and MXR it may happen that the characteristic of the lower portion is also 128 too
small.

Exponent underflow occurs when the characteristic of the final result is less than 0, and
its mantissa is non-zero. If in this case the bit for exponent underflow is set to =1 in
the program mask (default value in BS2000) a program interrupt will take place: the
mantissa and the sign will be correct, but the characteristic of the result will be 128 too
large; otherwise no program interrupt will take place and the genuine zero will be
created as the final result. With MDXR, MXD and MXR, exponent underflow is not
acknowledged when only the lower portion underflows.

256 U3119-J-Z125-2-7600

Floating-point instructions MD, MDR, ME, MER, MXD, MXDR, MXR

Exponent overflow only occurs with the final result, not when a characteristic overflows
in an interim result.

The sign of the final result is computed according to the usual algebraic rules; however,
a genuine zero always has a positive sign.

Condition code

Stays the same.

Program interrupts

Type Weight Causes

Address trans. error X’48’ ME, MD, MXD: Read access of operand2
illegal.

Addressing error X’5C’ Wrong floating-point reg. specified or
D2(X2,B2) not full (double) word boundary.

Exponent overflow X’64’ Product characteristic > 127
Exponent underflow X’70’ Product characteristic < 0

Programming notes

Switching the multiplicand and the multiplier does not change the result in any way.

With MER and ME, the rightmost 32 bits of the floating-point registers involved are
ignored when the mantissas are multiplied. On the other hand, with these
instructions the rightmost 32 bits are overwritten by the product.

With MXDR and MXD the contents of the floating-point register R1+2 are ignored
when the mantissas are multiplied. However, its contents are overwritten by the
lower portion of the product. With MXDR, the contents of floating-point register
R2+2 are also ignored.

BS2000 presets the mask bit for exponent underflow to 1 in the program mask, so
that under the conditions described above a program interrupt will occur. However,
the application program can change the presetting by using the SPM instruction.

R2 may be equal to R1.

With the instructions MER, ME, MXDR and MXD the result is exact; with MDR, MD
and MXR hexadecimal digits located to the right may be lost as a result of
truncation.

U3119-J-Z125-2-7600 257

MD, MDR, ME, MER, MXD, MXDR, MXR Floating-point instructions

Example

Name Operation Operands

.
FLNO1 DC EE2’2.56’ =X’43100000’
FLNO2 DC ES4’-16’ =X’C6000010’
FLNO3 DC D’-4096’ =X’C410000000000000’

.

.

.
LE 6,FLNO1
ME 6,FLNO2
CD 6,FLNO3 yields CC 0~Equal
.

The ME instruction creates the value D’4096’= X’C410000000000000’; the CD instruction
sets the condition code to 0~Equal.
This example makes use of the Assembler options for the data declaration of floating-
point numbers. The E-type constants in the data declarations for FLNO1 and FLNO2
cause the assembler to generate short floating-point numbers; the D-type constant
causes generation of a long floating-point number. The exponent factor "E2" (for
FLNO1) causes the argument 2.56 to be multiplied by 102, and the scaling factor "S4"
(for FLNO2) creates a mantissa shifted 4 hexadecimal positions to the right. Further
options for floating-point data declarations can be found in the ASSEMBH Reference
Manual [1].

258 U3119-J-Z125-2-7600

Floating-point instructions SD, SDR, SE, SER, SXR

Subtract Normalized

Function

The instructions SER, SE, SDR, SD and SXR subtract two floating-point numbers. The
normalized difference replaces the first operand.
The condition code is set in accordance with the value of the difference.

Assembler formats

Name Operation Operands Remarks

* short operands, short difference:

SER R1,R2 R1,R2 =0, 2, 4 or 6
SE R1,D2(X2,B2) R1 =0, 2, 4 or 6 and

* long operands, long difference:

SDR R1,R2 R1,R2 =0, 2, 4 or 6
SD R1,D2(X2,B2) R1 =0, 2, 4 or 6 and

* extended operands, extended difference:

SXR R1,R2 R1,R2 =0 or 4

Machine formats

SER [RR] X’3B’ R1 R2 (Short operands)

SE [RX] X’7B’ R1 X2 B2 D2 (Short operands)

SDR [RR] X’2B’ R1 R2 (Long operands)

SD [RX] X’6B’ R1 X2 B2 D2 (Long operands)

SXR [RR] X’37’ R1 R2 (Extended
operands)

0 8 12 16 20 31

U3119-J-Z125-2-7600 259

SD, SDR, SE, SER, SXR Floating-point instructions

Description

First, the characteristics of both operands are compared; the mantissa of the operand
with the smaller characteristic is shifted to the right by the difference of the
characteristics, and its characteristic is increased by the same amount, so that the
characteristics are equal. The last hexadecimal digit to be shifted beyond the boundary
is preserved as a guard digit. The guard digit of the other operand - or of both
operands if the characteristics were identical prior to the subtraction operation - is set
to =0.

Next, both mantissas, including the guard digits, are subtracted, with the signs being
taken into account (operand1 mantissa minus operand2 mantissa). Their difference
forms an interim result consisting of 7 hexadecimal digits in the case of short format,
15 hexadecimal digits in the case of long format, and 29 hexadecimal digits in the case
of extended format.
If an overflow occurred, the interim result is shifted to the right by one hexadecimal
position; then a 116 is entered in the hexadecimal position freed to the left, and the
characteristic is increased by 1.

Significance occurs when the interim result, including guard digit, is =0. If in this case
the significance bit in the program mask has been set to =1 (default value in BS2000),
a program interrupt will occur; otherwise, no program interrupt occurs and a genuine
zero will be created as a final result.

If the interim result, including guard digit, is 0, it will be normalized, i.e. shifted to the
left until the highest-order hexadecimal digit is other than 016. Any hexadecimal
positions freed from the right will be padded with 016. The characteristic is reduced by
the number of shifted hexadecimal positions.
Finally, the normalized interim result is truncated to 6 or 14 or 28 hexadecimal digits
and made into the final result together with the previously calculated characteristic. With
extended format, a characteristic which is 14 less than the characteristic of the upper
portion is created in the lower portion of the floating-point difference, and the sign of
the lower portion is made identical to that of the upper portion.

Exponent overflow occurs when the characteristic of the final result is greater than 127.
A program interrupt then takes place: the sign and the mantissa are correct, but the
result characteristic(s) are 128 too small.

Exponent underflow occurs when the characteristic of the final result is less than 0. If,
in this case, the exponent underflow bit in the program mask has been set to =1
(default value in BS2000), a program interrupt takes place: the sign and the mantissa
are correct, but the result characteristic(s) are 128 too large. Otherwise, no program
interrupt takes place and a genuine zero is created as the final result.
With the SXR instruction, exponent underflow does not occur when only the lower
portion of the final result has a characteristic less than 0. In this case, its characteristic
is set 128 too large.

260 U3119-J-Z125-2-7600

Floating-point instructions SD, SDR, SE, SER, SXR

Condition code

0~Zero The mantissa of the final result is = 0; the sign is positive.
1~Minus Result is < 0.
2~Plus Result is > 0.
3 Not used.

Program interrupts

Type Weight Causes

Address trans. error X’48’ SE, SD: read access of operand2 illegal.
Addressing error X’5C’ Wrong floating-point reg. specified or

D2(X2,B2) not full (double) word boundary.
Exponent overflow X’64’ Characteristic of difference > 127.
Significance X’6C’ Mantissa =0, characteristic �0 and

mask bit for significance =1.
Exponent underflow X’70’ Characteristic of difference < 0.

Programming notes

Normalized subtraction normalizes the difference, but not the initial operands.

BS2000 presets the bits for exponent underflow and significance to 1 in the program
mask, so that in the aforementioned cases a program interrupt will occur. An
application program can change the presetting using the instruction SPM (Set
Program Mask).

With SE and SER the rightmost 32 bits of the floating-point register involved are
ignored and are left unchanged.

R2 may be equal to R1; in this case, the result will be a genuine zero.

U3119-J-Z125-2-7600 261

SD, SDR, SE, SER, SXR Floating-point instructions

Example

Name Operation Operands

.
DS 0F

FLNO1 DC X’46100000’
FLNO2 DC X’40200000’

.

.

.
LE 0,FLNO1
SE 0,FLNO2
.

The final result in the floating-point register is X’45FFFFFE’ and the condition code is
set to 2~Plus.
After the characteristics were unified, the second operand had the value X’46000000’
and the guard digit was =216. The interim result was X’460FFFFFE’.

262 U3119-J-Z125-2-7600

Floating-point instructions STD, STE

Store

Function

The instructions STE and STD store the floating-point number located in floating-point
register R1 in a main memory field.

Assembler formats

Name Operation Operands Remarks

* short operands:

STE R1,D2(X2,B2) R1 =0, 2, 4 or 6 and

* long operands:

STD R1,D2(X2,B2) R1 =0, 2, 4 or 6

Machine formats

STE [RX] X’70’ R1 X2 B2 D2 (Short operands)

STD [RX] X’60’ R1 X2 B2 D2 (Long operands)

0 8 12 16 20 31

Description

The short (or long) floating-point number in floating-point register R1 is stored in the
word (or doubleword) at the main memory location indicated by D2(X2,B2).

Condition code

Stays the same.

U3119-J-Z125-2-7600 263

STD, STE Floating-point instructions

Program interrupts

Type Weight Causes

Address trans. error X’48’ Write access of operand2 illegal.
Addressing error X’5C’ Wrong floating-point reg. specified or

D2(X2,B2) not full (double) word boundary.

264 U3119-J-Z125-2-7600

Floating-point instructions SU, SUR, SW, SWR

Subtract Unnormalized

Function

The instructions SUR, SU, SWR and SW subtract two floating-point numbers. The
difference replaces the first operand; it is not normalized. The condition code is set in
accordance with the value of the difference.

Assembler formats

Name Operation Operands Remarks

* short operands, short difference:

SUR R1,R2 R1,R2 =0, 2, 4 or 6
SU R1,D2(X2,B2) R1 =0, 2, 4 or 6 and

* long operands, long difference:

SWR R1,R2 R1,R2 =0, 2, 4 or 6
SW R1,D2(X2,B2) R1 =0, 2, 4 or 6

Machine formats

SUR [RR] X’3F’ R1 R2 (Short operands)

SU [RX] X’7F’ R1 X2 B2 D2 (Short operands)

SWR [RR] X’2F’ R1 R2 (Long operands)

SW [RX] X’6F’ R1 X2 B2 D2 (Long operands)

0 8 12 16 20 31

U3119-J-Z125-2-7600 265

SU, SUR, SW, SWR Floating-point instructions

Description

First, the characteristics of both operands are compared; the mantissa of the operand
with the smaller characteristic is shifted to the right by the difference of the
characteristics, and its characteristic is increased by the same amount, so that the
characteristics are equal. The last hexadecimal digit to be shifted beyond the boundary
is preserved as a guard digit. The guard digit of the other operand - or of both
operands if the characteristics were identical prior to the subtraction operation - is set
to =0.

Next, both mantissas, including the guard digits, are subtracted, with the signs being
taken into account (operand1 mantissa minus operand2 mantissa). Their difference
forms an interim result consisting of 7 hexadecimal digits in the case of short format
and 15 hexadecimal digits in the case of long format.

If an overflow occurred, the interim result is shifted to the right by one hexadecimal
position; then a 116 is entered in the hexadecimal position freed to the left, and the
characteristic is increased by 1.

Significance occurs when the interim result, including guard digit, is =0. If in this case
the significance bit in the program mask has been set to =1 (default value in BS2000),
a program interrupt will occur; otherwise, no program interrupt occurs and a genuine
zero will be created as a final result.

The unnormalized interim result is truncated to 6 or 14 hexadecimal digits and made
into the final result together with the previously calculated characteristic.

Exponent overflow occurs when the characteristic of the final result is greater than 127.
A program interrupt then takes place: the sign and the mantissa are correct, but the
result characteristic(s) are 128 too small.

Exponent underflow cannot occur.

Condition code

0~Zero The mantissa of the final result is = 0; the sign is positive.
1~Minus Result is < 0.
2~Plus Result is > 0.
3 Not used.

266 U3119-J-Z125-2-7600

Floating-point instructions SU, SUR, SW, SWR

Program interrupts

Type Weight Causes

Address trans. error X’48’ SU, SW: Read access of operand2 illegal.
Addressing error X’5C’ Wrong floating-point reg. specified or

D2(X2,B2) not full (double) word boundary.
Exponent overflow X’64’ Difference characteristic > 127.
Significance X’6C’ Mantissa =0, characteristic �0 and

mask bit for significance =1

Programming notes

BS2000 presets the significance bit in the program mask to 1, so that in the
aforementioned case a program interrupt will occur. An application program can
change the presetting by using the instruction SPM (Set Program Mask).

With SU and SUR the rightmost 32 bits in the floating-point registers involved are
ignored and remain unchanged.

Unnormalized subtraction is equivalent to normalized subtraction except for the
following differences:

The result is not normalized.

Exponent underflow cannot occur.

The guard digit is not used for determining significance.

With extended floating-point operations there is an instruction for normalized
subtraction (SXR), but not for unnormalized subtraction.

Example

Name Operation Operands

.
DS 0D

FLNO1 DC X’4001111111111111’
FLNO2 DC X’3F11111111111101’

.

.

.
LD 2,FLNO1
SW 2,FLNO2
.

U3119-J-Z125-2-7600 267

SU, SUR, SW, SWR Floating-point instructions

The result of the above instructions depends on the value of the significance bit in the
program mask: if this bit is =1 (default value in BS2000) the final result is
X’4000000000000000’ and a program interrupt takes place due to significance;
otherwise, the final result is X’000000000000000000’ (genuine zero) and no program
interrupt takes place. In both cases the condition code is set to 0~Zero.
After the characteristics were unified, the second operand had the value
X’4001111111111110’ and the guard digit was =116. The interim result was
X’4000000000000000F’. Note that even with unnormalized subtraction (and addition) the
guard digits are subtracted (or added).

268 U3119-J-Z125-2-7600

ESA instructions Overview

6 ESA instructions

Overview

The ESA instructions support the extended virtual address space available on ESA
systems.

a) Read/write operations on access registers (CPYA, EAR, SAR, LAM, STAM, LAE).

b) Query AR/ASC mode (IAC).
Set or reset AR/ASC mode (SAC).

c) Check access-register address translations (TAR).

ESA systems (Enterprise System Architecture) support both program space
(corresponding to conventional address space) and extended address space for data.
Like program space, the data spaces have virtual addresses (address 0 to 2
gigabytes). Data spaces may contain only data (or program code stored as data) -
program code cannot be executed in a data space. A data space is addressed
unambiguously by means of the SPID (space identification) or one or more ALETs
(access list entry token). The SPID is assigned when a data space is created and has
global validity. ALETs point unambiguously to a data space only within a program.
Addressing with ALETs entailed the introduction of access registers (see also 2.2.2) as
an additional set of registers parallel to the general-purpose registers. The access
registers contain the ALETs. When AR mode (access register mode) is active, address
translation in a machine instruction involves evaluation of the access registers, which
means that data in a data space is addressed.

Only programs running on ESA systems under a BS2000 version V11 and using ESA
instructions can store data in a data space of this type. See the "Executive Macros"
manual [3].

ESA systems support the 24-bit and 31-bit addressing modes, data spaces and
program space. Consequently, ESA systems offer an additional addressing mode
known as the AR mode. The XS capability of ESA systems remains available regardless
of the AR mode. The program space and each data space created can use either only
the lower address space or the lower and higher address spaces. Support for XS
programs is described in the manual "Introduction to XS Programming" [2].

U3119-J-Z125-2-7600 269

Overview ESA instructions

AR mode

The AR mode (access register mode) is part of the ASC mode (address space control
mode). It defines how the access registers are evaluated in address translation:

If AR mode is switched on, the access registers are evaluated as part of addressing.
This enables addresses in the data spaces to be accessed.
A value 0 in an access register has a special meaning:
A value 0 in an access register enables the program space to be addressed in AR
mode. This is the default value of the access registers when a program starts.

If AR mode is switched off, the access registers are not evaluated and only
addresses in the program space can be accessed. The program runs like a
conventional program on a non-ESA system.

For information on the AR mode, use the IAC instruction to query the ASC mode.
The SAC instruction switches the AR mode on and off.

Notes

ESA programming is supported by the following BS2000 macros:
(see manual "Executive Macros" [3])

DSPSRVcreates and releases data space
ALESRV links task to data space and revokes link
ALINF requests information on access lists

When addressing with access registers, note the following:

The general-purpose register associated with the access register must be used as the
base register. If, say, a general-purpose register is used as an index register, the
corresponding access register is ignored. If a general-purpose register is specified as
the base register in an instruction, the corresponding access register must be supplied
with values correctly in AR mode.
On account of the strict relationship between access registers and base registers, it is
important not to switch index and base registers in AR mode.

270 U3119-J-Z125-2-7600

ESA instructions CPYA

Copy Access Register

Function

The CPYA instruction transfers the contents of an access register to an access register.
The condition code is left unchanged.

Assembler format

Name Operation Operands Remarks

CPYA R1,R2

Machine format

CPYA [RRE] X’B24D’ //////// R1 R2

0 16 24 28 31

Description

The contents of access register R2 are transferred to access register R1.

Bit positions 16 to 23 of the instruction are ignored.

Condition code

Stays the same.

Program interrupts

None.

U3119-J-Z125-2-7600 271

EAR ESA instructions

Extract Access Register

Function

The EAR instruction transfers the contents of an access register to a general-purpose
register.
The condition code is left unchanged.

Assembler format

Name Operation Operands Remarks

EAR R1,R2

Machine format

EAR [RRE] X’B24F’ //////// R1 R2

0 16 24 28 31

Description

The contents of access register R2 are transferred to general-purpose register R1.

Bit positions 16 to 23 of the instruction are ignored.

Condition code

Stays the same.

Program interrupts

None.

272 U3119-J-Z125-2-7600

ESA instructions IAC

Insert Address Space Control

Function

The IAC instruction transfers the current value of the ASC mode to a general-purpose
register.
The condition code is set in accordance with the value of the ASC mode.

Assembler format

Name Operation Operands Remarks

IAC R1

Machine format

IAC [RRE] X’B224’ //////// R1 ////

0 16 24 28 31

Description

The ASC mode (primary space mode or access register mode) can be queried either in
register R1 or by means of the condition code.

Bit 16 and bit 17 (address space control bits ASC mode) of the current PSW are
reversed and transferred to general-purpose register R1 as bits 22 and 23, in other
words bit 16 becomes bit 23 and bit 17 becomes bit 22 of register R1. Bit positions 16
to 21 of register R1 are set to 0, bit positions 0 to 15 and 24 to 31 of the register
remain unchanged.

Bit positions 16 to 23 and 28 to 31 of the instruction are ignored.

Condition code

0 primary space mode (PSW bit 16 and PSW bit 17 =0)
2 access register mode (PSW bit 16 =0 and PSW bit 17 =1)

Program interrupts

None.

U3119-J-Z125-2-7600 273

LAE ESA instructions

Load Address Extended

Function

The LAE instruction loads a general-purpose register with an address and the
corresponding access register with a value.
The condition code is left unchanged.

Assembler format

Name Operation Operands Remarks

LAE R1,D2(X2,B2)

Machine format

LAE [RX] X’51’ R1 X2 B2 D2

0 8 12 16 20 31

Description

The address D2(X2,B2) is loaded into general-purpose register R1. The address is the
logical sum of the addresses in general-purpose registers X2 and B2 and the binary
value of the 12-bit long D2 field. In this calculation the sign is ignored and any carry
over past the highest-order binary position is ignored. If X2=0, the content of register
X2 is not taken into account. If B2=0, the content of register B2 is not taken into
account.

In the 24-bit addressing mode, only the lowest-order 24 bits of general-purpose
registers B2 and X2 are used to calculate the sum. The sum is written into general-
purpose register R1 at bit positions 8 to 31 and bit positions 0 to 7 of R1 are set to 0.
In the 31-bit addressing mode only the lowest-order 31 bits of general-purpose registers
B2 and X2 are used to calculate the sum. The sum is written into general-purpose
register R1 at bit positions 1 to 31 and bit 0 is set to 0.

The corresponding access register R1 receives a value that depends on the AR mode,
the current value of bit positions 16 and 17 (address space control bits) of the PSW. If
bit positions 16 and 17 have the binary value 01, indicating that AR mode (access
register mode) is switched on, the value in the access register is further dependent on
whether the B2 field =0 or 0 (see table below).

274 U3119-J-Z125-2-7600

ESA instructions LAE

PSW bits Mode Value in access register R1
16 and 17

00 primary space X’00000000’
mode i.e. bit positions 0 to 31 =0

01 access register X’00000000’, if B2 field =0.
mode

If B2 field �0, the content of
access register B2 is transferred to
access register R1.
Bit positions 0 to 6 of access register
B2 must be =0, otherwise the results
in general-purpose register R1 and in
access register R1 are undefined.

The address derived as a result of this operation is not accessed.

Condition code

Stays the same.

Program interrupts

None.

U3119-J-Z125-2-7600 275

LAM ESA instructions

Load Access Multiple

Function

The LAM instruction loads up to 16 consecutive words from main memory into
consecutive access registers.
The condition code is left unchanged.

Assembler format

Name Operation Operands Remarks

LAM R1,R3,D2(B2) D2(B2): word boundary

Machine format

LAM [RS] X’9A’ R1 R3 B2 D2

0 8 12 16 20 31

Description

The consecutive access registers, beginning with R1 and ending with R3, receive
consecutive words, the first of which is addressed by D2(B2).

If R1=R3, only one register (R1) receives a value. If R3 is less than R1, loading begins
at R1 and continues upwards to access register 15 and from access register 0 up to
and including R3.

Name Operand1 Operand2

LAM Contents of access registers Word sequence addressed by D2(B2)
R1 to R3 No. of words =R3-R1+1, if R3 R1

=R3-R1+17, if R3<R1

Condition code

Stays the same.

276 U3119-J-Z125-2-7600

ESA instructions LAM

Program interrupts

Type Weight Causes

Address trans. error X’48’ Read access of operand2 illegal
Addressing error X’5C’ D2(B2) not a word boundary

U3119-J-Z125-2-7600 277

SAC ESA instructions

Set Address Space Control

Function

The SAC instruction switches AR mode (access register mode) on and off.
The condition code is left unchanged.

Assembler format

Name Operation Operands Remarks

SAC D2(B2)

Machine format

SAC [S] X’B219’ B2 D2

0 16 20 31

Description

Bit positions 20 to 23 of the D2 field or register B2 set the address space control bits in
the PSW (bits 16 and 17), thus switching the AR mode (access register mode) on or
off:

Directly in the D2 field
Set bits 20 to 23 as shown in the table below. Bit positions 20 and 21 must be =0.
Bit positions 24 to 31 are ignored.

The B2 field defines a general-purpose register (GPR).
Load the values shown in the table below into the register (bits 20 to 23). Bit
positions 20 and 21 must be =0. Bit positions 0 to 19 and 24 to 31 of the register
are ignored.

D2 field /GPR reg.,
bit position Mode PSW bits
20,21,22,23 16 and 17

0000 primary space mode 00

0010 access register mode 01

278 U3119-J-Z125-2-7600

ESA instructions SAC

Condition code

Stays the same.

Program interrupts

None.

Programming notes

The values of bit positions 20 to 23 of the D2 field or the general-purpose register
(B2) correspond to those that the IAC instruction stores in a general-purpose
register.

Example

Name Operation Operands

.
SAC 512 switch on AR mode
SAC 0 switch off AR mode

.

.

U3119-J-Z125-2-7600 279

SAR ESA instructions

Set Access Register

Function

The SAR instruction transfers the contents of a general-purpose register to an access
register.
The condition code is left unchanged.

Assembler format

Name Operation Operands Remarks

SAR R1,R2

Machine format

SAR [RRE] X’B24E’ //////// R1 R2

0 16 24 28 31

Description

The contents of general-purpose register R2 are transferred to access register R1.

Bit positions 16 to 23 of the instruction are ignored.

Condition code

Stays the same.

Program interrupts

None.

280 U3119-J-Z125-2-7600

ESA instructions STAM

Store Access Multiple

Function

The STAM instruction stores the contents of up to 16 consecutive access registers in
consecutive words in main memory.
The condition code is left unchanged.

Assembler format

Name Operation Operands Remarks

STAM R1,R3,D2(B2) D2(B2): word boundary

Machine format

STAM [RS] X’9B’ R1 R3 B2 D2

0 8 12 16 20 31

Description

The contents of consecutive access registers, the first being R1 and the last R3, are
transferred to consecutive words in main memory. The first word is addressed by
D2(B2).
If R1 > R3, transfer begins at access register R1 and continues to register 15, and then
from access register 0 to register R3. If R1=R3, only one access register (R1) is stored.

Name Operand1 Operand2

STAM Contents of access registers Sequence of words addressed by D2(B2)
R1 to R3 No. of words =R3-R1+1, if R3 R1

=R3-R1+17, if R3<R1

Condition code

Stays the same.

U3119-J-Z125-2-7600 281

STAM ESA instructions

Program interrupts

Type Weight Causes

Address trans. error X’48’ Write access to operand2 illegal
Addressing error X’5C’ D2(B2) not a word boundary

282 U3119-J-Z125-2-7600

ESA instructions TAR

Test Access Register

Function

The TAR instruction checks for the occurrence of an exception during address
translation involving an access register (ART, access register translation).
The condition code is set in accordance with the ALET value.

Assembler format

Name Operation Operands Remarks

TAR R1,R2

Machine format

TAR [RRE] X’B24C’ //////// R1 R2

0 16 24 28 31

Description

The content of access register R1 (ALET, access list entry token) is tested for
exceptions detected in the course of the ART (access register translation).
The ALET is tested to ascertain whether it references a valid entry in the access list or
contains X’00000000’.

If R1 =0, the content of access register 0 is used in the ART, instead of the
conventional value X’00000000’.

BS2000 versions V11 currently ignore bit positions 0 to 15 of general-purpose
register R2. Bit positions 16 to 31 of the register are ignored.

Bit positions 16 to 23 of the instruction are ignored.

U3119-J-Z125-2-7600 283

TAR ESA instructions

Condition code

0 ALET (access list entry token) is X’00000000’.
1 ALET causes no exceptions in the ART (access register translation).
2 ALET causes no exceptions in the ART.
3 ALET causes exceptions in the ART.

Program interrupts

Type Weight Causes

Address trans. error X’48’
Special operation X’54’ ESA functions not available
Exception

284 U3119-J-Z125-2-7600

Appendix

7 Appendix

U3119-J-Z125-2-7600 285

Appendix

7.1 EBCDIC table (SRV.10)

EBCDIC.SRV.10

A (zone)

B (digit)

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL TC7 SP & - { } \ 0

1 TC1 DC1 / a j ~ A J 1

2 TC2 DC2 TC9 ~ b k s B K S 2

3 TC3 DC3 [c l t C L T 3

4] d m u D M U 4

5 FE1 NL FE2 e n v E N V 5

6 FE0 TCA f o w F O W 6

7 DEL ESC TC4 ß g p x G P X 7

8 CAN h q y H Q Y 8

9 EM i r z I R Z 9

A ! ^ :

B FE3 . $, # Ä ä

C FE4 IS4 DC4 < * % @ Ö ö

D FE5 IS3 TC5 TC8 () _ ’ Ü ü

E SO1 IS2 TC6 + ; > =

F SI 1 IS1 BEL SUB | ? "

1) The control characters SI and SO will probably be dropped from the 8-bit code.

286 U3119-J-Z125-2-7600

Instructions listed by mnemonic code

7.2 Instructions listed by mnemonic code

Mnemo. Op. Inst. Length CC Inst. Assembler
code code Type in bytes class format

A 5A RX 4 yes Gen R1,D2(X2,B2)
AD 6A RX 4 yes Flpt R1,D2(X2,B2)
ADR 2A RR 2 yes Flpt R1,R2
AE 7A RX 4 yes Flpt R1,D2(X2,B2)
AER 3A RR 2 yes Flpt R1,R2
AH 4A RX 4 yes Gen R1,D2(X2,B2)
AL 5E RX 4 yes Gen R1,D2(X2,B2)
ALR 1E RR 2 yes Gen R1,R2
AP FA SS 6 yes Dcpt D1(L1,B1),D2(L2,B2)
AR 1A RR 2 yes Gen R1,R2
AU 7E RX 4 yes Flpt R1,D2(X2,B2)
AUR 3E RR 2 yes Flpt R1,R2
AW 6E RX 4 yes Flpt R1,D2(X2,B2)
AWR 2E RR 2 yes Flpt R1,R2
AXR 36 RR 2 yes Flpt R1,R2
BAL 45 RX 4 no Gen R1,D2(X2,B2)
BALR 05 RR 2 no Gen R1,R2
BAS 4D RX 4 no Gen R1,D2(X2,B2)
BASR 0D RR 2 no Gen R1,R2
BASSM 0C RR 2 no Gen R1,R2
BC 47 RX 4 no Gen M1,D2(X2,B2)
BCR 07 RR 2 no Gen M1,R2
BCT 46 RX 4 no Gen R1,D2(X2,B2)
BCTR 06 RR 2 no Gen R1,R2
BSM 0B RR 2 no Gen R1,R2
BXH 86 RS 4 no Gen R1,R3,D2(B2)
BXLE 87 RS 4 no Gen R1,R3,D2(B2)
C 59 RX 4 yes Gen R1,D2(X2,B2)
CD 69 RX 4 yes Flpt R1,D2(X2,B2)
CDR 29 RR 2 yes Flpt R1,R2
CDS BB RS 4 yes Gen R1,R3,D2(B2)
CE 79 RX 4 yes Flpt R1,D2(X2,B2)
CER 39 RR 2 yes Flpt R1,R2
CH 49 RX 4 yes Gen R1,D2(X2,B2)
CL 55 RX 4 yes Gen R1,D2(X2,B2)
CLC D5 SS 6 yes Gen D1(L,B1),D2(B2)
CLCL 0F RR 2 yes Gen R1,R2
CLI 95 SI 4 yes Gen D1(B1),I2
CLM BD RS 4 yes Gen R1,M3,D2(B2)
CLR 15 RR 2 yes Gen R1,R2
CP F9 SS 6 yes Dcpt D1(L1,B1),D2(L2,B2)
CPYA B24D RRE 4 no ESA R1,R2
CR 19 RR 2 yes Gen R1,R2
CS BA RS 4 yes Gen R1,R3,D2(B2)
CVB 4F RX 4 no Gen R1,D2(X2,B2)
CVD 4E RX 4 no Gen R1,D2(X2,B2)
D 5D RX 4 no Gen R1,D2(X2,B2)
DD 6D RX 4 no Flpt R1,D2(X2,B2)
DDR 2D RR 2 no Flpt R1,R2
DE 7D RX 4 no Flpt R1,D2(X2,B2)
DER 3D RR 2 no Flpt R1,R2

U3119-J-Z125-2-7600 287

Instructions listed by mnemonic code

Mnemo. Op. Inst. Length CC Inst. Assembler
code code Type in bytes class format

DP FD SS 6 no Dcpt D1(L1,B1),D2(L2,B2)
DR 1D RR 2 no Gen R1,R2
DXR B22D RRE 4 no Flpt R1,R2
EAR B24F RRE 4 no ESA R1,R2
ED DE SS 6 yes Dcpt D1(L,B1),D2(B2)
EDMK DF SS 6 yes Dcpt D1(L,B1),D2(B2)
EX 44 RX 4 ja* Gen R1,D2(X2,B2) *instr.-specific
HDR 24 RR 2 no Flpt R1,R2
HER 34 RR 2 no Flpt R1,R2
IAC B224 RRE 4 yes ESA R1
IC 43 RX 4 no Gen R1,D2(X2,B2)
ICM BF RS 4 yes Gen R1,M3,D2(B2)
IPM B222 RRE 4 no Gen R1
L 58 RX 4 no Gen R1,D2(X2,B2)
LA 41 RX 4 no Gen R1,D2(X2,B2)
LAE 51 RX 4 no ESA R1,D2(X2,B2)
LAM 9A RS 4 no ESA R1,R3,D2(B2)
LCDR 23 RR 2 yes Flpt R1,R2
LCER 33 RR 2 yes Flpt R1,R2
LCR 13 RR 2 yes Gen R1,R2
LD 68 RX 4 no Flpt R1,D2(X2,B2)
LDR 28 RR 2 no Flpt R1,R2
LE 78 RX 4 no Flpt R1,D2(X2,B2)
LER 38 RR 2 no Flpt R1,R2
LH 48 RX 4 no Gen R1,D2(X2,B2)
LM 98 RS 4 no Gen R1,R3,D2(B2)
LNDR 21 RR 2 yes Flpt R1,R2
LNER 31 RR 2 yes Flpt R1,R2
LNR 11 RR 2 yes Gen R1,R2
LPDR 20 RR 2 yes Flpt R1,R2
LPER 30 RR 2 yes Flpt R1,R2
LPR 10 RR 2 yes Gen R1,R2
LR 18 RR 2 no Gen R1,R2
LRDR 25 RR 2 no Flpt R1,R2
LRER 35 RR 2 no Flpt R1,R2
LTDR 22 RR 2 yes Flpt R1,R2
LTER 32 RR 2 yes Flpt R1,R2
LTR 12 RR 2 yes Gen R1,R2
M 5C RX 4 no Gen R1,D2(X2,B2)
MC AF SI 4 yes Gen D1(B1),I2
MD 6C RX 4 no Flpt R1,D2(X2,B2)
MDR 2C RR 2 no Flpt R1,R2
ME 7C RX 4 no Flpt R1,D2(X2,B2)
MER 3C RR 2 no Flpt R1,R2
MH 4C RX 4 no Gen R1,D2(X2,B2)
MP FC SS 6 no Dcpt D1(L1,B1),D2(L2,B2)
MR 1C RR 2 no Gen R1,R2
MVC D2 SS 6 no Gen D1(L,B1),D2(B2)
MVCL 0E RR 2 yes Gen R1,R2
MVI 92 SI 4 no Gen D1(B1),I2
MVN D1 SS 6 no Gen D1(L,B1),D2(B2)

288 U3119-J-Z125-2-7600

Instructions listed by mnemonic code

Mnemo. Op. Inst. Length CC Inst. Assembler
code code Type in bytes class format

MVO F1 SS 6 no Gen D1(L1,B1),D2(L2,B2)
MVZ D3 SS 6 no Gen D1(L,B1),D2(B2)
MXD 67 RX 4 no Flpt R1,D2(X2,B2)
MXDR 27 RR 2 no Flpt R1,R2
MXR 26 RR 2 no Flpt R1,R2
N 54 RX 4 yes Gen R1,D2(X2,B2)
NC D4 SS 6 yes Gen D1(L,B1),D2(B2)
NI 94 SI 4 yes Gen D1(B1),I2
NR 14 RR 2 yes Gen R1,R2
O 56 RX 4 yes Gen R1,D2(X2,B2)
OC D6 SS 6 yes Gen D1(L,B1),D2(B2)
OI 96 SI 4 yes Gen D1(B1),I2
OR 16 RR 2 yes Gen R1,R2
PACK F2 SS 6 no Gen D1(L1,B1),D2(L2,B2)
S 5B RX 4 yes Gen R1,D2(X2,B2)
SAC B219 S 4 no ESA D2(B2)
SAR B24E RRE 4 no ESA R1,R2
SD 6B RX 4 yes Flpt R1,D2(X2,B2)
SDR 2B RR 2 yes Flpt R1,R2
SE 7B RX 4 yes Flpt R1,D2(X2,B2)
SER 3B RR 2 yes Flpt R1,R2
SH 4B RX 4 yes Gen R1,D2(X2,B2)
SL 5F RX 4 yes Gen R1,D2(X2,B2)
SLA 8B RS 4 yes Gen R1,D2(B2)
SLDA 8F RS 4 yes Gen R1,D2(B2)
SLDL 8D RS 4 no Gen R1,D2(B2)
SLL 89 RS 4 no Gen R1,D2(B2)
SLR 1F RR 2 yes Gen R1,R2
SP FB SS 6 yes Dcpt D1(L1,B1),D2(L2,B2)
SPM 04 RR 2 yes Gen R1
SR 1B RR 2 yes Gen R1,R2
SRA 8A RS 4 yes Gen R1,D2(B2)
SRDA 8E RS 4 yes Gen R1,D2(B2)
SRDL 8C RS 4 no Gen R1,D2(B2)
SRL 88 RS 4 no Gen R1,D2(B2)
SRP F0 SS 6 yes Dcpt D1(L1,B1),D2(B2),I3
ST 50 RX 4 no Gen R1,D2(X2,B2)
STAM 9B RS 4 no ESA R1,R3,D2(B2)
STC 42 RX 4 no Gen R1,D2(X2,B2)
STCK B205 S 4 yes Gen D2(B2)
STCM BE RS 4 no Gen R1,M3,D2(B2)
STD 60 RX 4 no Flpt R1,D2(X2,B2)
STE 70 RX 4 no Flpt R1,D2(X2,B2)
STH 40 RX 4 no Gen R1,D2(X2,B2)
STM 90 RS 4 no Gen R1,R3,D2(B2)
SU 7F RX 4 yes Flpt R1,D2(X2,B2)
SUR 3F RR 2 yes Flpt R1,R2
SVC 0A RR 2 no Gen I
SW 6F RX 4 yes Flpt R1,D2(X2,B2)
SWR 2F RR 2 yes Flpt R1,R2
SXR 37 RR 2 yes Flpt R1,R2
TAR B24C RRE 4 yes ESA R1,R2
TM 91 SI 4 yes Gen D1(B1),I2

U3119-J-Z125-2-7600 289

Instructions listed by mnemonic code

Mnemo. Op. Inst. Length CC Inst. Assembler
code code Type in bytes class format

TR DC SS 6 no Gen D1(L,B1),D2(B2)
TRT DD SS 6 yes Gen D1(L,B1),D2(B2)
TS 93 S 4 yes Gen D2(B2)
UNPK F3 SS 6 no Gen D1(L1,B1),D2(L2,B2)
X 57 RX 4 yes Gen R1,D2(X2,B2)
XC D7 SS 6 yes Gen D1(L,B1),D2(B2)
XI 97 SI 4 yes Gen D1(B1),I2
XR 17 RR 2 yes Gen R1,R2
ZAP F8 SS 6 yes Dcpt D1(L1,B1),D2(L2,B2)

290 U3119-J-Z125-2-7600

Instructions listed by operation code

7.3 Instructions listed by operation code

Op. Mnemo. Inst. Length CC Inst. Assembler
code code Type in bytes class format

04 SPM RR 2 yes Gen R1
05 BALR RR 2 no Gen R1,R2
06 BCTR RR 2 no Gen R1,R2
07 BCR RR 2 no Gen M1,R2
0A SVC RR 2 no Gen I
0B BSM RR 2 no Gen R1,R2
0C BASSM RR 2 no Gen R1,R2
0D BASR RR 2 no Gen R1,R2
0E MVCL RR 2 yes Gen R1,R2
0F CLCL RR 2 yes Gen R1,R2
10 LPR RR 2 yes Gen R1,R2
11 LNR RR 2 yes Gen R1,R2
12 LTR RR 2 yes Gen R1,R2
13 LCR RR 2 yes Gen R1,R2
14 NR RR 2 yes Gen R1,R2
15 CLR RR 2 yes Gen R1,R2
16 OR RR 2 yes Gen R1,R2
17 XR RR 2 yes Gen R1,R2
18 LR RR 2 no Gen R1,R2
19 CR RR 2 yes Gen R1,R2
1A AR RR 2 yes Gen R1,R2
1B SR RR 2 yes Gen R1,R2
1C MR RR 2 no Gen R1,R2
1D DR RR 2 no Gen R1,R2
1E ALR RR 2 yes Gen R1,R2
1F SLR RR 2 yes Gen R1,R2
20 LPDR RR 2 yes Flpt R1,R2
21 LNDR RR 2 yes Flpt R1,R2
22 LTDR RR 2 yes Flpt R1,R2
23 LCDR RR 2 yes Flpt R1,R2
24 HDR RR 2 no Flpt R1,R2
25 LRDR RR 2 no Flpt R1,R2
26 MXR RR 2 no Flpt R1,R2
27 MXDR RR 2 no Flpt R1,R2
28 LDR RR 2 no Flpt R1,R2
29 CDR RR 2 yes Flpt R1,R2
2A ADR RR 2 yes Flpt R1,R2
2B SDR RR 2 yes Flpt R1,R2
2C MDR RR 2 no Flpt R1,R2
2D DDR RR 2 no Flpt R1,R2
2E AWR RR 2 yes Flpt R1,R2
2F SWR RR 2 yes Flpt R1,R2
30 LPER RR 2 yes Flpt R1,R2
31 LNER RR 2 yes Flpt R1,R2
32 LTER RR 2 yes Flpt R1,R2
33 LCER RR 2 yes Flpt R1,R2
34 HER RR 2 no Flpt R1,R2
35 LRER RR 2 no Flpt R1,R2
36 AXR RR 2 yes Flpt R1,R2
37 SXR RR 2 yes Flpt R1,R2
38 LER RR 2 no Flpt R1,R2

U3119-J-Z125-2-7600 291

Instructions listed by operation code

Op. Mnemo. Inst. Length CC Inst. Assembler
code code Type in bytes class format

39 CER RR 2 yes Flpt R1,R2
3A AER RR 2 yes Flpt R1,R2
3B SER RR 2 yes Flpt R1,R2
3C MER RR 2 no Flpt R1,R2
3D DER RR 2 no Flpt R1,R2
3E AUR RR 2 yes Flpt R1,R2
3F SUR RR 2 yes Flpt R1,R2
40 STH RX 4 no Gen R1,D2(X2,B2)
41 LA RX 4 no Gen R1,D2(X2,B2)
42 STC RX 4 no Gen R1,D2(X2,B2)
43 IC RX 4 no Gen R1,D2(X2,B2)
44 EX RX 4 ja* Gen R1,D2(X2,B2) *instr.-specific
45 BAL RX 4 no Gen R1,D2(X2,B2)
46 BCT RX 4 no Gen R1,D2(X2,B2)
47 BC RX 4 no Gen M1,D2(X2,B2)
48 LH RX 4 no Gen R1,D2(X2,B2)
49 CH RX 4 yes Gen R1,D2(X2,B2)
4A AH RX 4 yes Gen R1,D2(X2,B2)
4B SH RX 4 yes Gen R1,D2(X2,B2)
4C MH RX 4 no Gen R1,D2(X2,B2)
4D BAS RX 4 no Gen R1,D2(X2,B2)
4E CVD RX 4 no Gen R1,D2(X2,B2)
4F CVB RX 4 no Gen R1,D2(X2,B2)
50 ST RX 4 no Gen R1,D2(X2,B2)
51 LAE RX 4 no ESA R1,D2(X2,B2)
54 N RX 4 yes Gen R1,D2(X2,B2)
55 CL RX 4 yes Gen R1,D2(X2,B2)
56 O RX 4 yes Gen R1,D2(X2,B2)
57 X RX 4 yes Gen R1,D2(X2,B2)
58 L RX 4 no Gen R1,D2(X2,B2)
59 C RX 4 yes Gen R1,D2(X2,B2)
5A A RX 4 yes Gen R1,D2(X2,B2)
5B S RX 4 yes Gen R1,D2(X2,B2)
5C M RX 4 no Gen R1,D2(X2,B2)
5D D RX 4 no Gen R1,D2(X2,B2)
5E AL RX 4 yes Gen R1,D2(X2,B2)
5F SL RX 4 yes Gen R1,D2(X2,B2)
60 STD RX 4 no Flpt R1,D2(X2,B2)
67 MXD RX 4 no Flpt R1,D2(X2,B2)
68 LD RX 4 no Flpt R1,D2(X2,B2)
69 CD RX 4 yes Flpt R1,D2(X2,B2)
6A AD RX 4 yes Flpt R1,D2(X2,B2)
6B SD RX 4 yes Flpt R1,D2(X2,B2)
6C MD RX 4 no Flpt R1,D2(X2,B2)
6D DD RX 4 no Flpt R1,D2(X2,B2)
6E AW RX 4 yes Flpt R1,D2(X2,B2)
6F SW RX 4 yes Flpt R1,D2(X2,B2)
70 STE RX 4 no Flpt R1,D2(X2,B2)
78 LE RX 4 no Flpt R1,D2(X2,B2)
79 CE RX 4 yes Flpt R1,D2(X2,B2)
7A AE RX 4 yes Flpt R1,D2(X2,B2)
7B SE RX 4 yes Flpt R1,D2(X2,B2)
7C ME RX 4 no Flpt R1,D2(X2,B2)
7D DE RX 4 no Flpt R1,D2(X2,B2)

292 U3119-J-Z125-2-7600

Instructions listed by operation code

Op. Mnemo. Inst. Length CC Inst. Assembler
code code Type in bytes class format

7E AU RX 4 yes Flpt R1,D2(X2,B2)
7F SU RX 4 yes Flpt R1,D2(X2,B2)
86 BXH RS 4 no Gen R1,R3,D2(B2)
87 BXLE RS 4 no Gen R1,R3,D2(B2)
88 SRL RS 4 no Gen R1,D2(B2)
89 SLL RS 4 no Gen R1,D2(B2)
8A SRA RS 4 yes Gen R1,D2(B2)
8B SLA RS 4 yes Gen R1,D2(B2)
8C SRDL RS 4 no Gen R1,D2(B2)
8D SLDL RS 4 no Gen R1,D2(B2)
8E SRDA RS 4 yes Gen R1,D2(B2)
8F SLDA RS 4 yes Gen R1,D2(B2)
90 STM RS 4 no Gen R1,R3,D2(B2)
91 TM SI 4 yes Gen D1(B1),I2
92 MVI SI 4 no Gen D1(B1),I2
93 TS S 4 yes Gen D2(B2)
94 NI SI 4 yes Gen D1(B1),I2
95 CLI SI 4 yes Gen D1(B1),I2
96 OI SI 4 yes Gen D1(B1),I2
97 XI SI 4 yes Gen D1(B1),I2
98 LM RS 4 no Gen R1,R3,D2(B2)
9A LAM RS 4 no ESA R1,R3,D2(B2)
9B STAM RS 4 no ESA R1,R3,D2(B2)
AF MC SI 4 yes Gen D1(B1),I2
B205 STCK S 4 yes Gen D2(B2)
B219 SAC S 4 no ESA D2(B2)
B222 IPM RRE 4 no Gen R1
B224 IAC RRE 4 yes ESA R1
B22D DXR RRE 4 no Flpt R1,R2
B24C TAR RRE 4 yes ESA R1,R2
B24D CPYA RRE 4 no ESA R1,R2
B24E SAR RRE 4 no ESA R1,R2
B24F EAR RRE 4 no ESA R1,R2
BA CS RS 4 yes Gen R1,R3,D2(B2)
BB CDS RS 4 yes Gen R1,R3,D2(B2)
BD CLM RS 4 yes Gen R1,M3,D2(B2)
BE STCM RS 4 no Gen R1,M3,D2(B2)
BF ICM RS 4 yes Gen R1,M3,D2(B2)
D1 MVN SS 6 no Gen D1(L,B1),D2(B2)
D2 MVC SS 6 no Gen D1(L,B1),D2(B2)
D3 MVZ SS 6 no Gen D1(L,B1),D2(B2)
D4 NC SS 6 yes Gen D1(L,B1),D2(B2)
D5 CLC SS 6 yes Gen D1(L,B1),D2(B2)
D6 OC SS 6 yes Gen D1(L,B1),D2(B2)
D7 XC SS 6 yes Gen D1(L,B1),D2(B2)
DC TR SS 6 no Gen D1(L,B1),D2(B2)

U3119-J-Z125-2-7600 293

Instructions listed by operation code

Op. Mnemo. Inst. Length CC Inst. Assembler
code code Type in bytes class format

DD TRT SS 6 yes Gen D1(L,B1),D2(B2)
DE ED SS 6 yes Dcpt D1(L,B1),D2(B2)
DF EDMK SS 6 yes Dcpt D1(L,B1),D2(B2)
F0 SRP SS 6 yes Dcpt D1(L1,B1),D2(B2),I3
F1 MVO SS 6 no Gen D1(L1,B1),D2(L2,B2)
F2 PACK SS 6 no Gen D1(L1,B1),D2(L2,B2)
F3 UNPK SS 6 no Gen D1(L1,B1),D2(L2,B2)
F8 ZAP SS 6 yes Dcpt D1(L1,B1),D2(L2,B2)
F9 CP SS 6 yes Dcpt D1(L1,B1),D2(L2,B2)
FA AP SS 6 yes Dcpt D1(L1,B1),D2(L2,B2)
FB SP SS 6 yes Dcpt D1(L1,B1),D2(L2,B2)
FC MP SS 6 no Dcpt D1(L1,B1),D2(L2,B2)
FD DP SS 6 no Dcpt D1(L1,B1),D2(L2,B2)

294 U3119-J-Z125-2-7600

Extended mnemonic operation code

7.4 Extended mnemonic operation code

To make work easier for programmers, the assembler has extended mnemonic
operation codes at its disposal. These make it possible to represent conditioned
branches mnemonically, including their branch masks. The assembler breaks down
these extended mnemonic operation codes into the instructions BC or BCR and sets
the mask accordingly.

For instructions with two meanings (e.g. minus/mixed), the instruction with the second
meaning (mixed) is to be used following the TM instruction.

Assembler format yields Meaning
with extended
mnemonic opera- inst. mask,operand
tion code

B D2(X2,B2) BC 15,D2(X2,B2) Branch
BE D2(X2,B2) BC 8,D2(X2,B2) Branch when Equal
BH D2(X2,B2) BC 2,D2(X2,B2) Branch when High
BL D2(X2,B2) BC 4,D2(X2,B2) Branch when Low
BM D2(X2,B2) BC 4,D2(X2,B2) Branch when Minus/Mixed
BNE D2(X2,B2) BC 7,D2(X2,B2) Branch when Not Equal
BNH D2(X2,B2) BC 13,D2(X2,B2) Branch when Not High
BNL D2(X2,B2) BC 11,D2(X2,B2) Branch when Not Low
BNM D2(X2,B2) BC 11,D2(X2,B2) Branch when Not Minus/Mixed
BNO D2(X2,B2) BC 14,D2(X2,B2) Branch when Not Overflow/Ones
BNP D2(X2,B2) BC 13,D2(X2,B2) Branch when Not Plus
BNZ D2(X2,B2) BC 7,D2(X2,B2) Branch when Not Zero/Zeroes
BO D2(X2,B2) BC 1,D2(X2,B2) Branch when Overflow/Ones
BP D2(X2,B2) BC 2,D2(X2,B2) Branch when Plus
BR R2 BCR 15,R2 Branch Register
BRE R2 BCR 8,R2 Branch Register when Equal
BRH R2 BCR 2,R2 Branch Register when High
BRL R2 BCR 4,R2 Branch Register when Low
BRM R2 BCR 4,R2 Branch Register when Minus/Mixed
BRNE R2 BCR 7,R2 Branch Register when Not Equal
BRNH R2 BCR 13,R2 Branch Register when Not High
BRNL R2 BCR 11,R2 Branch Register when Not Low
BRNM R2 BCR 11,R2 Branch Register when Not Minus/Mixed
BRNO R2 BCR 14,R2 Branch Register when Not Overflow/Ones
BRNP R2 BCR 13,R2 Branch Register when Not Plus
BRNZ R2 BCR 7,R2 Branch Register when Not Zero/Zeroes
BRO R2 BCR 1,R2 Branch Register when Overflow/Ones
BRP R2 BCR 2,R2 Branch Register when Plus
BRZ R2 BCR 8,R2 Branch Register when Zero/Zeroes
BZ D2(X2,B2) BC 8,D2(X2,B2) Branch when Zero/Zeroes
NOP D2(X2,B2) BC 0,D2(X2,B2) No Operation
NOPR R2 BCR 0,R2 No Operation Register

U3119-J-Z125-2-7600 295

Powers of base 2

7.5 Powers of base 2

Value Decimal Hexadecimal
representation representation

20 1 1
21 2 2
22 4 4
23 8 8
24 16 10
25 32 20
26 64 40
27 128 80
28 256 1 00
29 512 2 00
210 1 024 4 00
211 2 048 8 00
212 4 096 10 00
213 8 192 20 00
214 16 384 40 00
215-1 32 767 7F FF
215 32 768 80 00
216-1 65 535 FF FF
216 65 536 1 00 00
217 131 072 2 00 00
218 262 144 4 00 00
219 524 288 8 00 00
220 1 048 576 10 00 00
221 2 097 152 20 00 00
222 4 194 304 40 00 00
223 8 388 608 80 00 00
224-1 16 777 215 FF FF FF
224 16 777 216 1 00 00 00
225 33 544 432 2 00 00 00
226 67 108 864 4 00 00 00
227 134 217 728 8 00 00 00
228 268 435 456 10 00 00 00
229 536 870 912 20 00 00 00
230 1 073 741 824 40 00 00 00
231-1 2 147 483 647 7F FF FF FF
231 2 147 483 648 80 00 00 00 *)
232-1 4 294 976 295 FF FF FF FF *)

-1 -1 FF FF FF FF
-2 -2 FF FF FF FE
-2 15 -32 768 FF FF 80 00
-2 31 -2 147 483 648 80 00 00 00

*) Unsigned 32-bit binary number.

296 U3119-J-Z125-2-7600

Shared data in multiprocessor systems

7.6 Access to shared data in multiprocessor systems

Competing access by a number of programs (tasks/contingency processes) to shared
data in memory must be carefully programmed to reduce the risk of concurrent access
in multiprocessor systems. A lock is required for both read and write operations on
shared data in order to prevent inconsistencies due to competing write accesses (a
data item can also be treated as a lock).
The lock may be a byte, a word or a doubleword in length.
A binary lock that is one word long (also known as a lockword) may have the value 0
for ’free’ or another value such as X’FFFFFFFF’ for ’reserved’.
In a count lock a counter is incremented or decremented.

The terms ’safe read’, ’safe write’, ’safe instructions’ and ’safe operation’ are used
below to mean
that no other processor can change a byte in the word or doubleword or a bit in the
byte or word or doubleword while the read or write operation is in progress.

Only certain instructions are ’safe instructions’ and therefore suitable for setting,
resetting or querying locks.
Absolutely safe instructions on all systems are: CS, CDS and TS; see Chapter 3 and
Appendix 7.6.1
Note, however, that these instructions take ten times longer to execute than an ST, for
example, and even longer on some types of system.

Resetting a byte with MVI is a ’safe operation’.
Resetting a word or doubleword with the instructions MVC, ST, STM, and STD is a
’safe operation’ only on 7.590 systems and higher. On downward-compatible systems
(7.580), use the CS or CDS instruction to reset locks or clear shared memory spaces
(not protected by a lock) longer than 1 byte (i.e. spaces of word or doubleword
length).

Querying a byte with CLI is a ’safe operation’.
Querying a word or doubleword with C, CL, CLC, IC, L, LM, LD, MVC is a ’safe
operation’ on 7.590 systems and higher. On downward-compatible systems (7.580)
queries on locks or shared memory spaces (not protected by a lock) longer than 1
byte (i.e. spaces of word or doubleword length) must be repeated, in order to ensure
that no incorrect values have been read.

U3119-J-Z125-2-7600 297

Shared data in multiprocessor systems

7.6.1 Setting locks

The following instructions are suitable for setting locks:

TS (1 byte, but only 2 values, = X’FF’ and X’FF’,
so suitable only for binary locks)

CS (1 word)
CDS (1 doubleword)

These instructions ensure that a second processor cannot access a memory location
already being accessed in an update. The condition code can be queried for the
original value of the corresponding operands in each of these instructions.

All other memory access instructions and those listed below are not suitable, because
they do not exclude the possibility of simultaneous access by a second processor:

MVI, NI, OI, XI, MVC, NC, OC, XC, ST, STM, STC.

7.6.2 Resetting locks

The following instructions are suitable for resetting locks on 7.590 systems and higher:

MV1 instruction for a byte
ST and MVC instructions for a word
STM, STD and MVC instructions for a doubleword.

As mentioned above, you should use the instructions CS, CDS, and TS on other
systems. Since these commands ensure that write is a safe operation for the lengths
listed in the table, their use in conjunction with TS / CS / CDS ensures unique memory
assignments.

The preconditions for using the MVC instruction are:
the two operands must not overlap and both must be aligned on word or doubleword
boundary (according to their length).

Setting a count lock is equivalent to decrementing the counter, so CD/CDS are the
only valid instructions.

The instructions listed below are not suitable for resetting binary locks and lockwords.
They require two memory access operations (read followed by write) and are not
protected against intervening access by other processors:

NI, NC, OI, OC, XI, XC.

298 U3119-J-Z125-2-7600

Shared data in multiprocessor systems

7.6.3 Querying locks

The following instructions are suitable for querying locks on 7.590 systems and higher:

CLI and IC instructions for a byte
C, CL, CLC, L and MVC instructions for a word
LM, LD, CLC and MVC instructions for a doubleword.

As mentioned above, you should repeat the instructions (except CLC) on other
systems. Conditions for using the CLC instruction are:
the two operands must not overlap and both must be aligned on word or doubleword
boundary (according to their length).

The instructions listed below are not suitable for querying locks. They require two
memory access operations (read followed by write) and are not protected against
intervening access operations by other processors:

NI, NC, OI, OC, XI, XC, ZAP.

U3119-J-Z125-2-7600 299

Shared data in multiprocessor systems

7.6.4 Examples

Counter locks

Example 1: Increment

L Rold,LOCK
@CYCLE

LR Rnew,Rold
AH Rnew,=H’1’

@WHEN EQ
CS Rold,Rnew,LOCK
@BREAK

@BEND

Example 2: Increment conditionally

@CYCLE
L Rold,LOCK

@WHEN GZ
LTR Rnew,Rold

@AND EQ
AH Rnew,=H’1’
CS Rold,Rnew,LOCK

@BREAK
@IF LE

LTR Rold,Rold
@THEN

@PASS NAME=wait
@BEND

@BEND

It would be wrong to access the lock value a second time (i.e. L Rnew,LOCK instead of
LTR Rnew,Rold), because there would no longer be any guarantee that the modified
value and the reference value differ exactly by the intended difference - the lock could
have been changed by a second program (task/contingency) in the time between the
two access instructions.

In the second example, assignment with the L Rold,LOCK instructions must take place
within the loop, because the CS instruction is not executed unless the first part of the
query (Rold > 0) is true.

Resource management

Resources, e.g. memory elements (or entries) of the same size, need managing.
Elements of this nature can be assigned dynamically to a table and released when
necessary. Consequently, each element can be either ’free’ or ’reserved’. The elements
can be managed with the aid of a bit vector in which each bit is assigned to an
element and acts as a status flag for the element in question:
Let us assume that Bit(N) = 0 means ’element(N) is free’

300 U3119-J-Z125-2-7600

Shared data in multiprocessor systems

Bit(N) = 1 means ’element(N) is reserved’

For the sake of simplicity, let us assume that a maximum of 64 elements, i.e. 64 bits, is
adequate for our purposes.

Example 3: Reserving an element

LOCK DC D’0’
...

OLD DS D
NEW DS D

...
SLR R4,R4
LA R5,1
SLDL R4,64-bitnum (bitnum 1...64)
LM R6,R7,LOCK

@CYCLE
LR R8,R6
LR R9,R7

@IF NZ
NR R8,R4

@OR NZ
NR R9,R5

@THEN
LA R15,reserved

- @EXIT

@BEND
LR R8,R6
LR R9,R7
OR R8,R4
OR R9,R5

@WHEN EQ
CDS R6,R8,LOCK

@BREAK
@BEND

Register pair (R4,R5) contains a bit set to 1 at the position that represents the element
to be reserved; all other bits are 0. Register pair (R6,R7) contains the original contents
of the bit vector ’LOCK’. Register pair (R8,R9) is the result of ORing (R6,R7) and
(R4,R5), so its set bits are those set in (R6,R7), plus the bit set in (R4,R5). The OR
result is protected and written into the ’LOCK’ bit vector by the CDS instruction.

U3119-J-Z125-2-7600 301

Shared data in multiprocessor systems

Example 4: Releasing an element (contrasting example)

LOCK DC D’0’
...

OLD DS D
NEW DS D

...
SLR R4,R4
LA R5,1
SLDL R4,64-bitnum (bitnum 1..64)
X R4,=A(X’FFFFFFFF’)
X R5,=A(X’FFFFFFFF’)
LM R8,R9,LOCK *

/\/ *
LM R6,R7,LOCK *

@CYCLE *
NR R8,R4 *
NR R9,R5 *

@WHEN EQ
CDS R6,R8,LOCK

@BREAK
LR R8,R6 @
LR R9,R7 @

@BEND

Register pair (R4,R5) contains a bit set to 0 at the position that represents the element
to be released; all other bits are 1. Register pair (R6,R7) contains the original contents
of the bit vector ’LOCK’. Register pair (R8,R9) is the result of ANDing (R6,R7) with
(R4,R5), so its set bits are those set in (R6,R7) without the bit set in (R4,R5). The AND
result is protected and written into the bit vector by the CDS instruction.

The error is due to the fact that the result of the comparison (R6,R7) and the base
content for the modification (R8,R9) are fetched from memory in two steps. If a
program interrupt occurs at the point marked /\/ , and if the doubleword ’LOCK’ is
modified thereby or if it is modified at this point by another processor, this change is
revoked. An element just released by another program (process/task) is flagged as
reserved or, even worse, an element just reserved by another program is released
without good reason. Switching the instructions before and after the position marked by
/\/ would merely make an error more unlikely, but would not reliably exclude the
possibility of error.

302 U3119-J-Z125-2-7600

Shared data in multiprocessor systems

The way to solve the problem is to dispense with the second access to LOCK and to
initialize (R8,R9) at the start of the loop from (R6,R7), as in example 3 above.

LM R6,R7,LOCK
@CYCLE

LR R8,R6
LR R9,R7
NR R8,R4
NR R9,R5

Insert this code instead of the code string marked * above. The second code string
marked @ is then unnecessary.

U3119-J-Z125-2-7600 303

Shared data in multiprocessor systems

Reader-writer synchronization

In the simplest case, this requires a lockword capable of assuming the following
statuses:

0 0 Lock is free (not reserved)

Bit 0 1 31

0 n Lock is reserved by n readers
(n = number of current readers)

Bit 0 1 31

1 id Lock is reserved by a writer
(id = identity of writer)

Bit 0 1 31

A reader must observe the following protocol:

Request read lock (GET_READ_LOCK)
Read
Release read lock (REL_READ_LOCK)

A writer must observe the following protocol:

Request write lock (GET_WRITE_LOCK)
Write
Release write lock (REL_WRITE_LOCK)

The table below lists the status transitions implemented for the lockword by the various
lock functions, with an indication as to whether a CS instruction is necessary (yes/no).

Function Status transition CS

GET_READ_LOCK (0,n) -> (0,n+1) yes

REL_READ_LOCK (0,n) -> (0,n-1) yes
condition: n>0, otherwise error

GET_WRITE_LOCK (0,0) -> (1,id) yes

REL_WRITE_LOCK (1,id) -> (0,0) no

This mode of synchronization is not efficient because a writer may never be granted a
write lock and therefore may never have an opportunity to write. This mode should be
used only for readers who seldom request a read lock and do not reserve the lock for
any length of time.

304 U3119-J-Z125-2-7600

Shared data in multiprocessor systems

One way of achieving efficient synchronization is to use a lock doubleword that can
assume the following statuses:

0 0 Lock free (not reserved)

Bit 0 31 32 63

0 n Lock is reserved by n readers
(n = number of current readers)

Bit 0 31 32 63

Lock is reserved by n readers, but
id n inhibited for other readers

(n = number of current readers,
Bit 0 31 32 63 id = identity of writer)

id 0 Lock is reserved by a writer
(id = identity of writer)

Bit 0 31 32 63

A reader must observe the following protocol:

Request read lock (GET_READ_LOCK)
Read
Release read lock (REL_READ_LOCK)

A writer must observe the following protocol:

Request write lock and inhibit read lock (GET_WRITE_LOCK_INHIBIT_READ)
Wait until read lock is released
Write
Release write lock and cancel read lock (REL_WRITE_LOCK_ADMIT_READ)

The table below lists the status transitions implemented for the lockword by the various
lock functions, with an indication as to whether a CDS or CS instruction is necessary
(yes/no).

Function Status transition CS/CDS

GET_READ_LOCK (0,n) -> (0,n+1) CDS

REL_READ_LOCK (x,n) -> (x,n-1) x = 0 id CS lock.right_word
condition: n>0, otherwise error

GET_WRITE_LOCK_... (0,n) -> (id,n) CS lock.left_word

REL_WRITE_LOCK_... (id,0) -> (0,0) no

U3119-J-Z125-2-7600 305

Shared data in multiprocessor systems

Multiprocessor capability of queueing mechanisms

Multiprocessor capability is illustrated by reference to the input/output queuing
mechanisms for a LIFO (last in first out) queue.

Let us assume that the queue has an anchor Q and contains the queued elements X, Y
and Z. The free element W is to be placed in the queue at an opportune time.

LIFO queue
Queue anchor Element X Element Y Element Z

C A(X) A(Y) A(Z) 0

Element W 0

If you want to dispense with lock protection while processing the queue (locking would
impair performance to an unacceptable degree), you must use the CS instruction to
update the queue.

When you place an element in the queue, the CS instruction ensures serialization of
those processes that might want to place elements in the queue at the same time. This
is because only the queue anchor need be evaluated to transfer the pointer to what
was previously the first element into the link field of the elements to be queued, and to
update the anchor itself.

When you unqueue an element, however, the CS instruction cannot exclude
simultaneous access by a number of unqueueing operations. Note the following
sequence of operations on the queue configuration outlined above:

Unqueue request by Other tasks/ Status of the
task/processor 1 processors queue

Initial status : Q X Y Z
: :

L Ra,A(X) 1st element :
L Rc,A(Y) queued element :

: :
: Unqueue element X Q Y Z
: Unqueue element Y Q Z
: Queue element W Q W Z
: Queue element X Q X W Z
: :

CS Ra,Rc,queue anchor : Q Y ?
: :

Element X unqueued Unqueue element Y Q ?

306 U3119-J-Z125-2-7600

Shared data in multiprocessor systems

Task/processor 1 starts unqueueing element X. Once the address of the element to be
unqueued and the link to the next element have been loaded, task/ processor 1 is
delayed (e.g. due to a task change, processor is preempted, intervention by VM2000).
Before the CS instruction can complete queue updating, other actions are performed
on the queue by other tasks/processors.

If the CS instruction of task/processor 1 now completes, the constellation above would
indicate a successful return, because the contents of the queue anchor have not
changed since the previous load instruction. The value supplied to the anchor is
element Y which is wrongly considered to be still queued. Element W, placed in the
queue during the interruption, is lost along with the succeeding queue elements.

If this sequence of operations on the queue is followed by another unqueueing
operation, element Y is assigned a second time and is thus used by two instances in
parallel, but without mutual coordination. Errors that can result from this situation are
overwrites and a linking loop (for example, if element Y is placed two times into the
queue shown above).

Diagnosing these errors is extremely difficult, if not impossible, as they usually do not
become apparent until much later. The problem can be circumvented by adding a
counter to the queue anchor. The counter must count in one direction only (e.g.
incrementally). The CDS instruction is used instead of CS, because the former can
modify the queue anchor over a doubleword length in a way that is suitable for
multiprocessors. The algorithm shown above must be modified as follows:

L Ra,C Load current counter from queue anchor
L Rb,A(X) Localize address of foremost element
LA Rc,1(,Ra) Increment counter (wrap around)
L Rd,A(Y) Localize address of queued element

CDS Ra,Rc,queue anchor Unqueue element

A counter that always shows the number of elements in the queue is not suitable for
diagnostics, because in the queuing example above it would continue to appear
unchanged like the queue element in the anchor.

U3119-J-Z125-2-7600 307

References

References
[1] ASSEMBH (BS2000)

Reference Manual

[2] Introductory Guide to XS Programming
(for Assembler Programmers) (BS2000)
User’s Guide

U3119-J-Z125-2-7600 309

[3] BS2000/OSD-BC
Executive Macros
User Guide

References

310 U3119-J-Z125-2-7600

Index

Index
##BASSM 40
##BSM 49
24-bit addressing mode 6, 30, 33ff, 39ff, 48f, 62, 87, 90f, 111f, 175, 202, 274
31-bit addressing mode 6, 30, 33ff, 39f, 48f, 62, 87, 90f, 111f, 175, 202, 274

A
A 27, 28, 32
absolute addresses 5
access register 8, 10, 269, 270, 271, 272, 276, 280
access register mode 273, 274
AD 230
addition (of binary numbers) 19
addition (of decimal numbers) 189
address computation 7
address space 5, 6
address space control bits 273, 274
address translation error 5, 14
address translation in AR mode 270
address word 6
addressing 5
addressing error 14
addressing main memory 5
addressing mode 269
addressing modes 6
ADR 227
AE 227
AER 227
AH 29, 30, 32
AL 31, 32
ALET 269
ALET value 283
alignment 8
allocation (of virtual addresses) 5
allocation see allocation of virtual addresses 5
ALR 31
AMODE 38, 41, 91

U3119-J-Z125-2-7600 311

Index

AND 122
AP 185, 189, 191
AR 27, 28
AR mode 6, 8, 269, 270
argument byte 170, 174
arithmetic, binary numbers 19
ASC mode 270
ASC modes 273
ASCII 171
Assembler 25, 44, 169, 185, 186, 188, 258
AU 231
AUR 231
AW 226, 231
AWR 231
AXR 227, 233

B
B 295
B field 7, 24, 25
BAL 33, 34, 37, 49, 87
BALR 33, 34, 37, 49, 79, 87
BAS 35, 36, 49
base address 7
base register 7, 24
BASR 35, 36, 37, 38, 49
BASSM 39, 40, 41, 49, 91
BC 34, 37, 42, 45
BCR 34, 37, 42, 45, 49
BCT 46, 47
BCTR 46, 80, 173, 203
BE 66, 176, 203, 295
BH 176, 203, 295
binary arithmetic 19
binary number 17
bit field 21
BL 176, 226, 295
BM 169, 295
BNE 72, 173, 226, 295
BNH 196, 295
BNL 136, 295
BNM 295
BNO 32, 162, 295
BNP 295
BNZ 295

312 U3119-J-Z125-2-7600

Index

BO 45, 169, 295
BP 295
BR 38, 45, 49, 295
BRE 295
BRH 295
BRL 295
BRM 169, 295
BRNE 295
BRNH 295
BRNL 295
BRNM 295
BRNO 295
BRNP 295
BRNZ 295
BRO 169, 295
BRP 295
BRZ 169, 295
BSM 34, 37, 40, 41, 48, 49, 91
BXH 50, 52
BXLE 50, 52
BZ 169, 295

C
C 53, 54, 58
CC 12, 34, 35
CD 234, 252, 258
CDR 234
CDS 69, 71, 178
CE 226, 234, 235
CER 234
CH 55, 56
character 16
character field 16
characteristic 219
CL 45, 54, 57, 58
CLC 59, 60, 196
CLCL 60, 61, 64, 80
CLI 65, 66
CLM 67, 68, 95
clock 160
CLR 57
compare instructions 61, 67
comparison (binary numbers) 20
comparison (of character (fields)) 16

U3119-J-Z125-2-7600 313

Index

condition code 12, 42, 86, 147, 273, 283
conversion (of decimal into fixed-point numbers) 73
conversion (of fixed-point into floating-point numbers) 226
conversion (of fixed-point to decimal numbers) 75
conversion (of floating-point into fixed-point numbers) 226
conversion table 170, 171, 174
counter 71
CP 185, 192, 193
CPYA 271, 280
CR 53
CS 69, 71, 72, 178
CSECT 41
CVB 73, 74
CVD 75, 76, 162
cyclic permutation 171

D
D 77, 78, 162
D (constant type) 258
D field 7, 24, 25
data error 14
data in multiprocessor systems 297
data space 6, 10, 269, 270
data types 16
DD 236, 239
DDR 236
DE 236
decimal instructions 185
decimal overflow 14, 15
decrementing 51
DER 236
digit selector 198
direct operand 24, 211
displacement address 7, 24
division 119
division (with MVO) 119
division error 14
doubleword 8
DP 185, 194, 196
DR 77, 78
DXR 225, 236

314 U3119-J-Z125-2-7600

Index

E
E (constant type) 258
E (exponent factor) 258
EAR 272
EBCDIC 16, 171
EBCDIC table (SRV.10) 286
ED 185, 197, 203
editing 197
editing to printable form 197
EDMK 185, 197, 202, 203
ESA instructions 269
ESA systems 6, 10, 269
EX 34, 37, 40, 63, 79, 80, 113
EXCLUSIVE OR 181
exponent 219
exponent overflow 14, 220
exponent underflow 14, 15, 220
extended format (of floating-point numbers) 222
extended mnemonic operation code 295

F
field separator 198
filler character (ED, EDMK) 199
fixed-point numbers 18
fixed-point overflow 14, 15, 28
floating-point instructions 219
floating-point register 11, 223
floating-point register pair 11
FLTOFP 226
for loops 51
formats of decimal numbers 186
formats of floating-point numbers 221
FPTOFL 226
function byte 170, 174

G
GB (gigabyte, 1 073 741 824 bytes) 5
general instructions 27
general-purpose register 0 10, 96, 165, 281
general-purpose register 1 165, 175, 202, 281
general-purpose register 2 175
general-purpose register pair 10
general-purpose registers 10
general-purpose registr 1 96
genuine zero 220, 266, 268

U3119-J-Z125-2-7600 315

Index

greatest positive fixed-point number (2147483647) 18
guard digit 224, 228, 232, 235, 240, 260, 266, 267
guard digits 224

H
halfword 8, 22
HDR 240
HER 240, 242

I
I field 24, 211, 212
IAC 273
IC 82, 83, 85
ICM 64, 84, 85, 87, 113, 148
ILC 34, 79, 87
incrementing 51
index address 7
index register 7, 24
instruction address 7
instruction continuation address 7, 33, 34, 36, 37, 40, 79
instruction format 22
instruction operands 24
instruction types 22
instructions listed by mnemonic code 287
instructions listed by operation code 291
interrupt weight 13
inverting (a character field) 173
inverting (bit positions) 183
inverting (of bit positions) 19
IPM 35, 86, 87, 148

L
L 28, 30, 32, 54, 56, 58, 72, 85, 88, 93, 99, 101, 136, 226
L (constant type) 258
L field 24, 25
LA 28, 30, 52, 90, 91, 173, 203
LAE 274
LAM 276
LCDR 243
LCER 243
LCR 92, 93
LD 226, 230, 239, 245, 252, 267
LDR 245
LE 226, 235, 242, 245, 258, 262
least negative fixed-point number (-2147483648) 18

316 U3119-J-Z125-2-7600

Index

length field 24
LER 245
LH 47, 52, 80, 94, 95
LM 28, 32, 64, 96, 97, 113, 136
LNDR 247
LNER 247
LNR 98, 99
logical binary arithmetic 19
long format (of floating-point numbers) 222
loop programming 51
LPDR 249
LPER 249
LPR 100, 101
LR 72, 88
LRDR 251
LRER 251, 252
LTDR 253
LTER 253
LTR 102, 173

M
M 103
M field 24
main memory operand 25
mantissa 219
marking with EDMK 202
mask 21, 24
mask character (ED, EDMK) 201
masking of program interrupts 15
MB (megabyte, 1 048 576 bytes) 5
MC 105
MDR 255
ME 255, 258
MER 255
MH 106, 107
move (decimal number) 119
move (decimal numbers) 119
MP 185, 205, 207
MR 103
multiplication (by SRP) 213
multiprocessor applications 70, 113, 124, 127, 177, 183
multiprocessor systems 124, 127, 183
MVC 108, 109, 112, 114
MVCL 80, 109, 110, 113

U3119-J-Z125-2-7600 317

Index

MVI 109, 114, 203
MVN 115, 116, 120
MVO 117, 119, 196
MVZ 121
MXD 255
MXDR 255
MXR 255

N
N 122
NC 122
NI 121, 122, 124
NOP 105, 295
NOPR 295
normalization 221
normalized floating-point numbers 221
NR 122

O
O 41, 125
OC 125
OI 121, 125
ones complement 19, 135
operand address 7
operand length 24, 25
operation code 22, 24
operation code (extended mnemonic) 44, 169, 295
operlap 63
OR 79, 125
Overlapping 129
overlapping 111, 183

P
P (constant type) 188
PACK 80, 128, 129
packed format 128, 179, 187
page 5
powers of base 2 296
primary space mode 273, 274
privileged operation 14
program interrupts 13
program mask 15, 34, 35, 86, 87, 147, 148, 268
program space 6, 269, 270
PSW bit 273, 274

318 U3119-J-Z125-2-7600

Index

R
R field 7, 11, 24
read only 80, 81
real addresses 5
receive field characters (ED, EDMK) 200
reentrant 80
register 10
register operand 24
rounding (binary numbers) 150, 152
rounding (decimal numbers) 211
rounding (floating-point number) 251
RR (instruction type) 22
RRE (instruction type) 22
RS (instruction type) 23
run variable 51
RX (instruction type) 22

S
S 130, 135, 136, 162
S (instruction type) 23
S (scale factor) 258
SAC 278
SD 226, 259
SDR 259
SE 259, 262
SER 259
serialization 70, 177
SH 132, 135, 136
SHAREWD 72
shifting (decimal numbers) 211
shifting (of binary numbers) 20
short format (of floating-point numbers) 222
SI (instruction type) 23
sign (binary numbers) 19
sign (decimal numbers) 186
sign (of floating-point numbers) 219
signed binary arithmetic 19
signed see signed binary arithmetic 19
significance 268
significance (binary numbers) 20
significance (floating-point numbers) 220
significance (with binary numbers) 18
significance (with ED or EDMK) 199
significance (with floating-point numbers) 14, 15

U3119-J-Z125-2-7600 319

Index

significance indicator 199
significance starter 198
signs (of binary numbers) 17
SL 134, 136, 162
SLA 137, 138
slack byte (CLCL) 62
slack byte (MVCL) 111
SLDA 140, 141
SLDL 143, 144
SLL 145, 146
SLR 99, 131, 134
source field digits (ED, EDMK) 199
SP 185, 208, 210
SPID 269
SPM 15, 87, 147, 148, 225, 233
SR 87, 130, 135, 176
SRA 149, 150, 157
SRDA 151, 153, 155
SRDL 154, 155
SRL 156, 157
SRP 185, 211, 214
SS (instruction type) 23
ST 158, 226
STAM 281
STC 81, 158, 173
STCK 160, 162
STCM 163, 164
STD 226, 263
STE 263
STH 158
STM 165, 166
STXIT 15
STXIT process 13
SU 265
subtraction (of binary numbers) 19
SUR 265
SVC 167
SW 265, 267
SWR 265
SXR 259

320 U3119-J-Z125-2-7600

Index

T
TAR 283
target instruction 79
text character 198
TM 45, 168, 169
TR 170, 172, 173
TRT 10, 174, 176
TS 177
twos complement 18, 19, 92, 98, 100, 135, 212

U
UND 122
unnormalized floating-point numbers 221
unpacked format 128, 179, 186
UNPK 179, 180
unsigned see logical binary arithmetic 19
USING 37

V
V constant 38, 41, 91
value range (of fixed-point numbers) 18
value range of floating-point numbers 224
value ranges (fixed-point numbers) 296
Vergleichsbefehle 55
virtual address 269
virtual addresses 5

W
word 8
wrong operation code 14
WROUT 167

X
X 181
X field 7, 24, 25
XC 116, 181, 183
XI 181, 226
XR 181, 183
XS central processing units 49
XS programs 269

Z
Z (constant type) 186
ZAP 215, 217
zero (floating-point numbers) 220
zoned format 186

U3119-J-Z125-2-7600 321

Index

322 U3119-J-Z125-2-7600

Contents

Contents
1 Preface 1.........................
1.1 Target group 1.......................
1.2 Summary of contents 1....................
1.3 Changes since the last version of the manual 3...........

2 Basic considerations 5....................
2.1 Addressing main memory 5...................
2.1.1 Virtual addresses 5.....................
2.1.2 24-bit and 31-bit addresses 5.................
2.1.3 Addressing modes 6....................
2.1.4 Instruction addresses, instruction continuation addresses 7......
2.1.5 Operand addresses, address computation 7...........
2.1.6 Alignment on halfword, word and doubleword boundaries 8......
2.2 Registers 10.........................
2.2.1 General-purpose registers 10.................
2.2.2 Access register 10......................
2.2.3 Floating-point registers 11...................
2.3 Condition code 12.......................
2.4 Program interrupts 13.....................
2.5 Data types 16........................
2.5.1 Characters and character fields 16...............
2.5.2 Binary numbers 17.....................
2.5.3 Bit field 21.........................
2.6 Instruction format 22......................

3 General instructions 27....................
Add 27...........................
Add Halfword 29.......................
Add Logical 31........................
Branch and Link 33......................
Branch and Save 36......................
Branch and Save and Set Mode 39................
Branch on Condition 42.....................
Branch on Count 46......................
Branch and Set Mode 48....................
Branch on Index 50......................
Compare 53.........................

U3119-J-Z125-2-7600

Contents

Compare Halfword 55.....................
Compare Logical 57......................
Compare Logical Characters 59.................
Compare Logical Long 61...................
Compare Logical Immediate 65..................
Compare Logical under Mask 67.................
Compare and Swap 69.....................
Convert to Binary 73......................
Convert to Decimal 75.....................
Divide 77..........................
Execute 79.........................
Insert Character 82......................
Insert Characters under Mask 84.................
Insert Program Mask 86....................
Load 88..........................
Load Address 90.......................
Load Complement 92.....................
Load Halfword 94.......................
Load Multiple 96.......................
Load Negative 98.......................
Load Positive 100.......................
Load and Test 102.......................
Multiply 103.........................
Monitor Call 105........................
Multiply Halfword 106......................
Move Characters 108......................
Move Long 110........................
Move Immediate 114......................
Move Numerics 115......................
Move with Offset 117......................
Move Zones 120........................
AND 122...........................
OR 125...........................
Pack 128..........................
Subtract 130.........................
Subtract Halfword 132.....................
Subtract Logical 134......................
Shift Left Single 137......................
Shift Left Double 140......................
Shift Left Double Logical 143...................
Shift Left Single Logical 145...................
Set Program Mask 147.....................
Shift Right Single 149......................
Shift Right Double 151.....................

U3119-J-Z125-2-7600

Contents

Shift Right Double Logical 154..................
Shift Right Single Logical 156...................
Store 158..........................
Store Clock 160........................
Store Characters under Mask 163.................
Store Multiple 165.......................
Supervisor Call 167......................
Test under Mask 168......................
Translate 170.........................
Translate and Test 174.....................
Test and Set 177.......................
Unpack 179.........................
EXCLUSIVE OR 181......................

4 Decimal instructions 185....................
Overview 185.........................
Add Decimal 189.......................
Compare Decimal 192.....................
Divide Decimal 194.......................
Edit 197...........................
Multiply Decimal 205......................
Subtract Decimal 208......................
Shift and Round Decimal 211...................
Zero and Add 215.......................

5 Floating-point instructions 219.................
Overview 219.........................
Add Normalized 227......................
Add Unnormalized 231.....................
Compare 234.........................
Divide 236..........................
Halve 240..........................
Load Complement 243.....................
Load 245..........................
Load Negative 247.......................
Load Positive 249.......................
Load Rounded 251.......................
Load and Test 253.......................
Multiply 255.........................
Subtract Normalized 259....................
Store 263..........................
Subtract Unnormalized 265....................

U3119-J-Z125-2-7600

Contents

6 ESA instructions 269.....................
Overview 269.........................
Copy Access Register 271....................
Extract Access Register 272...................
Insert Address Space Control 273.................
Load Address Extended 274...................
Load Access Multiple 276....................
Set Address Space Control 278..................
Set Access Register 280.....................
Store Access Multiple 281....................
Test Access Register 283....................

7 Appendix 285........................
7.1 EBCDIC table (SRV.10) 286...................
7.2 Instructions listed by mnemonic code 287..............
7.3 Instructions listed by operation code 291..............
7.4 Extended mnemonic operation code 295..............
7.5 Powers of base 2 296......................
7.6 Access to shared data in multiprocessor systems 297.........
7.6.1 Setting locks 298......................
7.6.2 Resetting locks 298......................
7.6.3 Querying locks 299......................
7.6.4 Examples 300........................

References 309...........................

Index 311.............................

U3119-J-Z125-2-7600

Edition May 1993 - new edition October 2016. Contains no technical changes.

©
 S

ie
m

en
s

N
ix

do
rf

In
fo

rm
at

io
ns

sy
st

em
e

A
G

 1
99

5
Pf

ad
: H

:\A
ng

el
a\

P
ro

je
kt

e\
B

S2
00

0-
Te

st
_a

lte
_H

an
db

ue
ch

er
\A

S
S

E
M

B
H

\u
s\

A
rb

ei
ts

da
te

ie
n\

as
se

m
bl

.v
or

User Guide - English

Assembler Instructions (BS2000/OSD)
Reference Manual

Valid for
ASSEMBH V1.2

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © Fujitsu Technology Solutions GmbH 2016.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Computers. This new subsidiary of
Fujitsu has been renamed Fujitsu Technology Solutions.
This document is an new edition of an earlier manual for a product version which was released a conside-
rable time ago in which no changes have been made to the subject matter.
Please note that all company references and copyrights in this document have been legally transferred to
Fujitsu Technology Solutions.
Contact and support addresses will now be offered by Fujitsu Technology Solutions and have the format
…@ts.fujitsu.com.
The Internet pages of Fujitsu Technology Solutions are available at http://ts.fujitsu.com/...

i

	Title
	Contents
	Preface
	Target group
	Summary of contents
	Changes since the last version of the manual

	Basic considerations
	Addressing main memory
	Virtual addresses
	24-bit and 31-bit addresses
	Addressing modes
	Instruction addresses, instruction continuation addresses
	Operand addresses, address computation
	Alignment on halfword, word and doubleword boundaries

	Registers
	General-purpose registers
	Access register
	Floating-point registers

	Condition code
	Program interrupts
	Data types
	Characters and character fields
	Binary numbers
	Bit field

	Instruction format

	General instructions
	Add
	Add Halfword
	Add Logical
	Branch and Link
	Branch and Save
	Branch and Save and Set Mode
	Branch on Condition
	Branch on Count
	Branch and Set Mode
	Branch on Index
	Compare
	Compare Halfword
	Compare Logical
	Compare Logical Characters
	Compare Logical Long
	Compare Logical Immediate
	Compare Logical under Mask
	Compare and Swap
	Convert to Binary
	Convert to Decimal
	Divide
	Execute
	Insert Character
	Insert Characters under Mask
	Insert Program Mask
	Load
	Load Address
	Load Complement
	Load Halfword
	Load Multiple
	Load Negative
	Load Positive
	Load and Test
	Multiply
	Monitor Call
	Multiply Halfword
	Move Characters
	Move Long
	Move Immediate
	Move Numerics
	Move with Offset
	Move Zones
	AND
	OR
	Pack
	Subtract
	Subtract Halfword
	Subtract Logical
	Shift Left Single
	Shift Left Double
	Shift Left Double Logical
	Shift Left Single Logical
	Set Program Mask
	Shift Right Single
	Shift Right Double
	Shift Right Double Logical
	Shift Right Single Logical
	Store
	Store Clock
	Store Characters under Mask
	Store Multiple
	Supervisor Call
	Test under Mask
	Translate
	Translate and Test
	Test and Set
	Unpack
	EXCLUSIVE OR

	Decimal instructions
	Overview
	Add Decimal
	Compare Decimal
	Divide Decimal
	Edit
	Multiply Decimal
	Subtract Decimal
	Shift and Round Decimal
	Zero and Add

	Floating-point instructions
	Overview
	Add Normalized
	Add Unnormalized
	Compare
	Divide
	Halve
	Load Complement
	Load
	Load Negative
	Load Positive
	Load Rounded
	Load and Test
	Multiply
	Subtract Normalized
	Store
	Subtract Unnormalized

	ESA instructions
	Overview
	Copy Access Register
	Extract Access Register
	Insert Address Space Control
	Load Address Extended
	Load Access Multiple
	Set Address Space Control
	Set Access Register
	Store Access Multiple
	Test Access Register

	Appendix
	EBCDIC table (SRV.10)
	Instructions listed by mnemonic code
	Instructions listed by operation code
	Extended mnemonic operation code
	Powers of base 2
	Access to shared data in multiprocessor systems
	Setting locks
	Resetting locks
	Querying locks
	Examples

	References
	Index
	A
	B
	C
	D
	E-G
	H-L
	M
	N-P
	R-S
	T-Z

